Abstract

Adaptive interferometric detection systems based on two-wave mixing in photorefractive crystals have been configured as distributed optical receivers. The spatial distribution of the detection laser power on the sample surface is controlled by use of phase gratings and amplitude masks. The responses of point, line, array, and chirped optical receivers to propagating surface acoustic waves (SAW’s) are discussed theoretically and demonstrated experimentally. It is shown that by use of different object beam footprints it is possible to configure adaptive holographic SAW receivers that are either broadband or narrow band and that are preferentially sensitive to SAW’s propagating in given directions. The receivers also allow for the distribution of laser power over the sample, eliminating the excessive heating or surface damage that can occur in some materials when high power, point-focused, detection lasers are used.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Scruby, L. E. Drain, Laser Ultrasonics, Techniques and Applications (Adam Hilger, Bristol, UK, 1990).
  2. D. A. Hutchins, “Ultrasonic generation by pulsed lasers,” in Physical Acoustics, W. P. Mason, R. N. Thurston, eds. (Academic, New York, 1988), Vol. XVIII, pp. 21–143.
  3. J. W. Wagner, J. B. Spicer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Am. B 4, 1316–1326 (1987).
    [CrossRef]
  4. A. D. W. McKie, J. W. Wagner, J. B. Spicer, C. M. Penny, “Laser generation of narrowband and directed ultrasound,” Ultrasonics 27, 323–330 (1989).
    [CrossRef]
  5. A. Harata, H. Nishimura, T. Sawada, “Laser-induced surface acoustic waves and photothermal surface gratings generated by crossing two pulsed laser beams,” Appl. Phys. Lett. 57, 132–134 (1990).
    [CrossRef]
  6. J. Huang, S. Krishnaswamy, J. D. Achenbach, “Laser generation of narrow-band surface waves,” J. Acoust. Soc. Am. 92, 2527–2531 (1992).
    [CrossRef]
  7. M.-H. Noroy, D. Royer, M. Fink, “The laser-generated phased array: analysis and experiments,” J. Acoust. Soc. Am. 94, 1934–1943 (1993).
    [CrossRef]
  8. Y. Yang, N. DeRidder, C. Ume, J. Jarzynski, “Noncontact optical fibre phased array generation of ultrasound for non-destructive evaluation of materials and processes,” Ultrasonics 31, 387–394 (1993).
    [CrossRef]
  9. J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. B. Deaton, “Sensitivity enhancement in laser ultrasonics using a versatile laser array system,” J. Acoust. Soc. Am. 97, 273–279 (1995).
    [CrossRef]
  10. T. W. Murray, J. B. Deaton, J. W. Wagner, “Experimental evaluation of enhanced generation of ultrasonic waves using an array of laser sources,” Ultrasonics 34, 69–77 (1996).
    [CrossRef]
  11. R. K. Ing, J. P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
    [CrossRef]
  12. B. F. Pouet, R. K. Ing, S. Krishnaswamy, D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
    [CrossRef]
  13. Ph. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
    [CrossRef]
  14. M. Paul, B. Betz, W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569–1571 (1987).
    [CrossRef]
  15. P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
    [CrossRef]
  16. H. Tuovinen, T. W. Murray, S. Krishnaswamy, “Adaptive interferometric array-receivers for detecting surface acoustic waves,” in Nondestructive Characterization of Materials IX, R. E. Green, ed. AIP Conf. Proc.497, 461–466 (1999).
  17. H. Tuovinen, S. Krishnaswamy, “Directionally sensitive photorefractive interferometric line receiver for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 73, 2236–2238 (1998).
    [CrossRef]
  18. J. D. Kraus, D. A. Fleisch, Electromagnetics, with Applications (McGraw-Hill, Boston, Mass., 1999).
  19. T. W. Murray, K. C. Baldwin, J. W. Wagner, “Laser ultrasonic chirp sources for low damage and high detectability without loss of temporal resolution,” J. Acoust. Soc. Am. 102, 2742–2746 (1997).
    [CrossRef]

1998 (1)

H. Tuovinen, S. Krishnaswamy, “Directionally sensitive photorefractive interferometric line receiver for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 73, 2236–2238 (1998).
[CrossRef]

1997 (2)

T. W. Murray, K. C. Baldwin, J. W. Wagner, “Laser ultrasonic chirp sources for low damage and high detectability without loss of temporal resolution,” J. Acoust. Soc. Am. 102, 2742–2746 (1997).
[CrossRef]

Ph. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

1996 (2)

B. F. Pouet, R. K. Ing, S. Krishnaswamy, D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
[CrossRef]

T. W. Murray, J. B. Deaton, J. W. Wagner, “Experimental evaluation of enhanced generation of ultrasonic waves using an array of laser sources,” Ultrasonics 34, 69–77 (1996).
[CrossRef]

1995 (2)

J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. B. Deaton, “Sensitivity enhancement in laser ultrasonics using a versatile laser array system,” J. Acoust. Soc. Am. 97, 273–279 (1995).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

1993 (2)

M.-H. Noroy, D. Royer, M. Fink, “The laser-generated phased array: analysis and experiments,” J. Acoust. Soc. Am. 94, 1934–1943 (1993).
[CrossRef]

Y. Yang, N. DeRidder, C. Ume, J. Jarzynski, “Noncontact optical fibre phased array generation of ultrasound for non-destructive evaluation of materials and processes,” Ultrasonics 31, 387–394 (1993).
[CrossRef]

1992 (1)

J. Huang, S. Krishnaswamy, J. D. Achenbach, “Laser generation of narrow-band surface waves,” J. Acoust. Soc. Am. 92, 2527–2531 (1992).
[CrossRef]

1991 (1)

R. K. Ing, J. P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

1990 (1)

A. Harata, H. Nishimura, T. Sawada, “Laser-induced surface acoustic waves and photothermal surface gratings generated by crossing two pulsed laser beams,” Appl. Phys. Lett. 57, 132–134 (1990).
[CrossRef]

1989 (1)

A. D. W. McKie, J. W. Wagner, J. B. Spicer, C. M. Penny, “Laser generation of narrowband and directed ultrasound,” Ultrasonics 27, 323–330 (1989).
[CrossRef]

1987 (2)

J. W. Wagner, J. B. Spicer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Am. B 4, 1316–1326 (1987).
[CrossRef]

M. Paul, B. Betz, W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569–1571 (1987).
[CrossRef]

Achenbach, J. D.

J. Huang, S. Krishnaswamy, J. D. Achenbach, “Laser generation of narrow-band surface waves,” J. Acoust. Soc. Am. 92, 2527–2531 (1992).
[CrossRef]

Arnold, W.

M. Paul, B. Betz, W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569–1571 (1987).
[CrossRef]

Baldwin, K. C.

T. W. Murray, K. C. Baldwin, J. W. Wagner, “Laser ultrasonic chirp sources for low damage and high detectability without loss of temporal resolution,” J. Acoust. Soc. Am. 102, 2742–2746 (1997).
[CrossRef]

Betz, B.

M. Paul, B. Betz, W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569–1571 (1987).
[CrossRef]

Blouin, A.

Ph. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

de Montmorillon, L.-A.

Deaton, J. B.

T. W. Murray, J. B. Deaton, J. W. Wagner, “Experimental evaluation of enhanced generation of ultrasonic waves using an array of laser sources,” Ultrasonics 34, 69–77 (1996).
[CrossRef]

J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. B. Deaton, “Sensitivity enhancement in laser ultrasonics using a versatile laser array system,” J. Acoust. Soc. Am. 97, 273–279 (1995).
[CrossRef]

Delaye, P.

P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

Delaye, Ph.

DeRidder, N.

Y. Yang, N. DeRidder, C. Ume, J. Jarzynski, “Noncontact optical fibre phased array generation of ultrasound for non-destructive evaluation of materials and processes,” Ultrasonics 31, 387–394 (1993).
[CrossRef]

Drain, L. E.

C. B. Scruby, L. E. Drain, Laser Ultrasonics, Techniques and Applications (Adam Hilger, Bristol, UK, 1990).

Drolet, D.

Ph. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

Fink, M.

M.-H. Noroy, D. Royer, M. Fink, “The laser-generated phased array: analysis and experiments,” J. Acoust. Soc. Am. 94, 1934–1943 (1993).
[CrossRef]

Fleisch, D. A.

J. D. Kraus, D. A. Fleisch, Electromagnetics, with Applications (McGraw-Hill, Boston, Mass., 1999).

Harata, A.

A. Harata, H. Nishimura, T. Sawada, “Laser-induced surface acoustic waves and photothermal surface gratings generated by crossing two pulsed laser beams,” Appl. Phys. Lett. 57, 132–134 (1990).
[CrossRef]

Huang, J.

J. Huang, S. Krishnaswamy, J. D. Achenbach, “Laser generation of narrow-band surface waves,” J. Acoust. Soc. Am. 92, 2527–2531 (1992).
[CrossRef]

Hutchins, D. A.

D. A. Hutchins, “Ultrasonic generation by pulsed lasers,” in Physical Acoustics, W. P. Mason, R. N. Thurston, eds. (Academic, New York, 1988), Vol. XVIII, pp. 21–143.

Ing, R. K.

B. F. Pouet, R. K. Ing, S. Krishnaswamy, D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
[CrossRef]

R. K. Ing, J. P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

Jarzynski, J.

Y. Yang, N. DeRidder, C. Ume, J. Jarzynski, “Noncontact optical fibre phased array generation of ultrasound for non-destructive evaluation of materials and processes,” Ultrasonics 31, 387–394 (1993).
[CrossRef]

Kraus, J. D.

J. D. Kraus, D. A. Fleisch, Electromagnetics, with Applications (McGraw-Hill, Boston, Mass., 1999).

Krishnaswamy, S.

H. Tuovinen, S. Krishnaswamy, “Directionally sensitive photorefractive interferometric line receiver for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 73, 2236–2238 (1998).
[CrossRef]

B. F. Pouet, R. K. Ing, S. Krishnaswamy, D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
[CrossRef]

J. Huang, S. Krishnaswamy, J. D. Achenbach, “Laser generation of narrow-band surface waves,” J. Acoust. Soc. Am. 92, 2527–2531 (1992).
[CrossRef]

H. Tuovinen, T. W. Murray, S. Krishnaswamy, “Adaptive interferometric array-receivers for detecting surface acoustic waves,” in Nondestructive Characterization of Materials IX, R. E. Green, ed. AIP Conf. Proc.497, 461–466 (1999).

McKie, A. D. W.

A. D. W. McKie, J. W. Wagner, J. B. Spicer, C. M. Penny, “Laser generation of narrowband and directed ultrasound,” Ultrasonics 27, 323–330 (1989).
[CrossRef]

Monchalin, J. P.

Ph. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

R. K. Ing, J. P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

Murray, T. W.

T. W. Murray, K. C. Baldwin, J. W. Wagner, “Laser ultrasonic chirp sources for low damage and high detectability without loss of temporal resolution,” J. Acoust. Soc. Am. 102, 2742–2746 (1997).
[CrossRef]

T. W. Murray, J. B. Deaton, J. W. Wagner, “Experimental evaluation of enhanced generation of ultrasonic waves using an array of laser sources,” Ultrasonics 34, 69–77 (1996).
[CrossRef]

J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. B. Deaton, “Sensitivity enhancement in laser ultrasonics using a versatile laser array system,” J. Acoust. Soc. Am. 97, 273–279 (1995).
[CrossRef]

H. Tuovinen, T. W. Murray, S. Krishnaswamy, “Adaptive interferometric array-receivers for detecting surface acoustic waves,” in Nondestructive Characterization of Materials IX, R. E. Green, ed. AIP Conf. Proc.497, 461–466 (1999).

Nishimura, H.

A. Harata, H. Nishimura, T. Sawada, “Laser-induced surface acoustic waves and photothermal surface gratings generated by crossing two pulsed laser beams,” Appl. Phys. Lett. 57, 132–134 (1990).
[CrossRef]

Noroy, M.-H.

M.-H. Noroy, D. Royer, M. Fink, “The laser-generated phased array: analysis and experiments,” J. Acoust. Soc. Am. 94, 1934–1943 (1993).
[CrossRef]

Paul, M.

M. Paul, B. Betz, W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569–1571 (1987).
[CrossRef]

Penny, C. M.

A. D. W. McKie, J. W. Wagner, J. B. Spicer, C. M. Penny, “Laser generation of narrowband and directed ultrasound,” Ultrasonics 27, 323–330 (1989).
[CrossRef]

Pouet, B. F.

B. F. Pouet, R. K. Ing, S. Krishnaswamy, D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
[CrossRef]

Roosen, G.

Royer, D.

B. F. Pouet, R. K. Ing, S. Krishnaswamy, D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
[CrossRef]

M.-H. Noroy, D. Royer, M. Fink, “The laser-generated phased array: analysis and experiments,” J. Acoust. Soc. Am. 94, 1934–1943 (1993).
[CrossRef]

Sawada, T.

A. Harata, H. Nishimura, T. Sawada, “Laser-induced surface acoustic waves and photothermal surface gratings generated by crossing two pulsed laser beams,” Appl. Phys. Lett. 57, 132–134 (1990).
[CrossRef]

Scruby, C. B.

C. B. Scruby, L. E. Drain, Laser Ultrasonics, Techniques and Applications (Adam Hilger, Bristol, UK, 1990).

Spicer, J. B.

A. D. W. McKie, J. W. Wagner, J. B. Spicer, C. M. Penny, “Laser generation of narrowband and directed ultrasound,” Ultrasonics 27, 323–330 (1989).
[CrossRef]

J. W. Wagner, J. B. Spicer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Am. B 4, 1316–1326 (1987).
[CrossRef]

Steckenrider, J. S.

J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. B. Deaton, “Sensitivity enhancement in laser ultrasonics using a versatile laser array system,” J. Acoust. Soc. Am. 97, 273–279 (1995).
[CrossRef]

Tuovinen, H.

H. Tuovinen, S. Krishnaswamy, “Directionally sensitive photorefractive interferometric line receiver for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 73, 2236–2238 (1998).
[CrossRef]

H. Tuovinen, T. W. Murray, S. Krishnaswamy, “Adaptive interferometric array-receivers for detecting surface acoustic waves,” in Nondestructive Characterization of Materials IX, R. E. Green, ed. AIP Conf. Proc.497, 461–466 (1999).

Ume, C.

Y. Yang, N. DeRidder, C. Ume, J. Jarzynski, “Noncontact optical fibre phased array generation of ultrasound for non-destructive evaluation of materials and processes,” Ultrasonics 31, 387–394 (1993).
[CrossRef]

Wagner, J. W.

T. W. Murray, K. C. Baldwin, J. W. Wagner, “Laser ultrasonic chirp sources for low damage and high detectability without loss of temporal resolution,” J. Acoust. Soc. Am. 102, 2742–2746 (1997).
[CrossRef]

T. W. Murray, J. B. Deaton, J. W. Wagner, “Experimental evaluation of enhanced generation of ultrasonic waves using an array of laser sources,” Ultrasonics 34, 69–77 (1996).
[CrossRef]

J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. B. Deaton, “Sensitivity enhancement in laser ultrasonics using a versatile laser array system,” J. Acoust. Soc. Am. 97, 273–279 (1995).
[CrossRef]

A. D. W. McKie, J. W. Wagner, J. B. Spicer, C. M. Penny, “Laser generation of narrowband and directed ultrasound,” Ultrasonics 27, 323–330 (1989).
[CrossRef]

J. W. Wagner, J. B. Spicer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Am. B 4, 1316–1326 (1987).
[CrossRef]

Yang, Y.

Y. Yang, N. DeRidder, C. Ume, J. Jarzynski, “Noncontact optical fibre phased array generation of ultrasound for non-destructive evaluation of materials and processes,” Ultrasonics 31, 387–394 (1993).
[CrossRef]

Appl. Phys. Lett. (6)

A. Harata, H. Nishimura, T. Sawada, “Laser-induced surface acoustic waves and photothermal surface gratings generated by crossing two pulsed laser beams,” Appl. Phys. Lett. 57, 132–134 (1990).
[CrossRef]

R. K. Ing, J. P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

B. F. Pouet, R. K. Ing, S. Krishnaswamy, D. Royer, “Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 69, 3782–3784 (1996).
[CrossRef]

M. Paul, B. Betz, W. Arnold, “Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,” Appl. Phys. Lett. 50, 1569–1571 (1987).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, “Heterodyne detection of ultrasound from rough surfaces using a double phase conjugate mirror,” Appl. Phys. Lett. 67, 3251–3253 (1995).
[CrossRef]

H. Tuovinen, S. Krishnaswamy, “Directionally sensitive photorefractive interferometric line receiver for ultrasound detection on rough surfaces,” Appl. Phys. Lett. 73, 2236–2238 (1998).
[CrossRef]

J. Acoust. Soc. Am. (4)

J. S. Steckenrider, T. W. Murray, J. W. Wagner, J. B. Deaton, “Sensitivity enhancement in laser ultrasonics using a versatile laser array system,” J. Acoust. Soc. Am. 97, 273–279 (1995).
[CrossRef]

J. Huang, S. Krishnaswamy, J. D. Achenbach, “Laser generation of narrow-band surface waves,” J. Acoust. Soc. Am. 92, 2527–2531 (1992).
[CrossRef]

M.-H. Noroy, D. Royer, M. Fink, “The laser-generated phased array: analysis and experiments,” J. Acoust. Soc. Am. 94, 1934–1943 (1993).
[CrossRef]

T. W. Murray, K. C. Baldwin, J. W. Wagner, “Laser ultrasonic chirp sources for low damage and high detectability without loss of temporal resolution,” J. Acoust. Soc. Am. 102, 2742–2746 (1997).
[CrossRef]

J. Opt. Am. B (1)

J. W. Wagner, J. B. Spicer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Am. B 4, 1316–1326 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

Ultrasonics (3)

A. D. W. McKie, J. W. Wagner, J. B. Spicer, C. M. Penny, “Laser generation of narrowband and directed ultrasound,” Ultrasonics 27, 323–330 (1989).
[CrossRef]

Y. Yang, N. DeRidder, C. Ume, J. Jarzynski, “Noncontact optical fibre phased array generation of ultrasound for non-destructive evaluation of materials and processes,” Ultrasonics 31, 387–394 (1993).
[CrossRef]

T. W. Murray, J. B. Deaton, J. W. Wagner, “Experimental evaluation of enhanced generation of ultrasonic waves using an array of laser sources,” Ultrasonics 34, 69–77 (1996).
[CrossRef]

Other (4)

J. D. Kraus, D. A. Fleisch, Electromagnetics, with Applications (McGraw-Hill, Boston, Mass., 1999).

H. Tuovinen, T. W. Murray, S. Krishnaswamy, “Adaptive interferometric array-receivers for detecting surface acoustic waves,” in Nondestructive Characterization of Materials IX, R. E. Green, ed. AIP Conf. Proc.497, 461–466 (1999).

C. B. Scruby, L. E. Drain, Laser Ultrasonics, Techniques and Applications (Adam Hilger, Bristol, UK, 1990).

D. A. Hutchins, “Ultrasonic generation by pulsed lasers,” in Physical Acoustics, W. P. Mason, R. N. Thurston, eds. (Academic, New York, 1988), Vol. XVIII, pp. 21–143.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Heterodyne and (b) homodyne systems used for distributed optical reception: PG’s, phase gratings; BS’s, beam splitters; PBS’s, polarizing beam splitters; AOM, acousto-optic modulator; P, polarizer; BSC, compensator; λ/2’s, half-wave plates.

Fig. 2
Fig. 2

Geometry of setup for distributed optical detection of surface acoustic waves.

Fig. 3
Fig. 3

Point-focused receiver frequency responses for various detection spot sizes.

Fig. 4
Fig. 4

Directional sensitivity of point-focused and line-focused optical receivers. The solid curve shows the theoretical line receiver response.

Fig. 5
Fig. 5

Normalized magnitude of the frequency response of the array receiver for arrays of sizes N = 1, 3, 9. The plot is for the case of normal incidence and for a line width of 50 µm, a SAW velocity of 3000 m/s, and a line spacing of 600 µm.

Fig. 6
Fig. 6

Nine-line-array detection of (a) three-cycle and (b) nine-cycle 5-MHz tone bursts. The receiver is tuned to 5 MHz.

Fig. 7
Fig. 7

Three-point array (tuned to receive 5 MHz) response to (a) a 10-cycle 5-MHz SAW tone burst and (b) a 10-cycle 7-MHz SAW tone burst.

Fig. 8
Fig. 8

(a) Linear FM tone burst (top) and narrow-band tone burst and (b) matched receiver response to FM tone burst, illustrating pulse compression (top) and matched receiver response to narrow-band toneburst.

Fig. 9
Fig. 9

(a) Chirped receiver response to a laser-generated FM surface wave and (b) response to the same surface wave with the receiver mask rotated 180°.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

SNR  U2PΔf1/2,
ux, y, t=Ux cos θ+y sin θ-ct,
Psigt=k0M S ux, y, tP0x, ydxdy,
P0x, y=P0 exp-x2+y2r02,
ux, y, t=U expikax cos θ+y sin θ-ωat),
Psig=k0MP0πr02 exp-ka2r024U exp-iωat.
P0x, y=P0 exp-x2x02,  -L/2yL/2.
Psig=k0MP0πLx0 exp-ka2x02 cos2 θ4×sinckaL sin θ2U exp-iωat.
P0x, y=P0n=1N δx-ndexp-x2x02, -L/2yL/2,
Psig=k0MP0πNLx0 exp-ka2x02 cos2 θ4×sinckaL sin θ2sinN kad cos θ2N sinkad cos θ2×U exp-iωat-φ,
Sx=cosωax+bx2.
P0x, y=P0½1+sgnSx,  0xT, -L/2yL/2,
sgnψ=1ψ>00ψ=0-1ψ<0.
ux, y, t=U cosωaα+bα2,  α=x-ct.

Metrics