Abstract

We demonstrate that the thickness and the dielectric constants of thin gold films deposited on the surface of a fiber core can be quantitatively determined as a single set of solutions by the simple measurement of the fiber-optic surface-plasmon resonance responses. This method is capable of directly characterizing metal films with curved surfaces: this is very hard to perform by use of the conventional optical techniques of reflectometry and ellipsometry. The theoretical errors for the experimental fiber are estimated to be within d ± 2%, ∊r ± 1%, and ∊i ± 15%.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef] [PubMed]
  2. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  3. L. G. Schulz, “The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k,” J. Opt. Soc. Am. 44, 357–362 (1954); L. G. Schulz, F. R. Tangherlini, “Optical constants of silver, gold, copper and aluminum. II. The index of refraction n,” J. Opt. Soc. Am. 44, 362–368 (1954).
    [CrossRef]
  4. W. H. Weber, S. L. MaCarthy, “Anomalies in the surface plasmon resonance excitation at both surfaces of evaporated metal films,” Appl. Phys. Lett. 25, 396–398 (1974).
    [CrossRef]
  5. E. Fontana, R. H. Pantell, M. Moslehi, “Characterization of dielectric-coated, metal mirrors using surface plasmon spectroscopy,” Appl. Opt. 27, 3334–3340 (1988).
    [CrossRef] [PubMed]
  6. W. H. Weber, S. L. McCarthy, “Surface-plasmon resonance as a sensitive optical probe of metal-film properties,” Phys. Rev. B 12, 5643–5650 (1975).
    [CrossRef]
  7. T. Lopez-Rios, G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81, 529–538 (1979).
    [CrossRef]
  8. E. Fontana, R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface plasmon spectroscopy,” Phys. Rev. B 37, 3164–3182 (1988).
    [CrossRef]
  9. H. Kitajima, K. Hieda, Y. Suematsu, “Optimum conditions in the attenuated total reflection technique,” Appl. Opt. 20, 1005–1010 (1981).
    [CrossRef] [PubMed]
  10. H. Gugger, M. Jurich, J. D. Swalen, “Observation of an index-of-refraction-induced change in the Drude parameters of Ag films,” Phys. Rev. B 30, 4189–4195 (1984).
    [CrossRef]
  11. C. E. Reed, J. Giergiel, S. Ushioda, “Effects of annealing on the attenuated-total-reflection spectra of cold-evaporated silver films,” Phys. Rev. B 31, 1873–1880 (1985).
    [CrossRef]
  12. X. Sun, S. Shiokawa, Y. Matsui, “Interactions of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69, 362–366 (1991).
    [CrossRef]
  13. H. E. de Bruijin, R. P. H. Kooyman, J. Greve, “Determination of dielectric permittivity and thickness of a metal layer from a surface plasmon resonance experiment,” Appl. Opt. 29, 1974–1978 (1990).
    [CrossRef]
  14. F. Yang, Z. Cao, J. Fang, “Use of exchanging media in ATR configurations for determination of thickness and optical constants of thin metallic films,” Appl. Opt. 27, 11–12 (1988).
    [CrossRef] [PubMed]
  15. W. P. Chen, J. M. Chen, “Use of surface plasmon waves for determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am. 71, 189–191 (1981).
    [CrossRef]
  16. R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
    [CrossRef]
  17. C. Ronot-Trioli, A. Trouillet, C. Veillas, A. El-Shaikh, H. Gagnaire, “Fibre optic chemical sensor based on surface plasmon monochromatic excitation,” Anal. Chim. Acta 319, 121–127 (1996).
    [CrossRef]
  18. W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, H. Gagnaire, “The effects of polarization of the incident light—modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A (to be published).
  19. K. Kurosawa, R. M. Pierce, S. Ushioda, J. C. Hemminger, “Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons,” Phys. Rev. B 33, 789–798 (1986).
    [CrossRef]
  20. R. A. Innes, J. R. Sambles, “Optical characterisation of gold using surface-plasmon polaritons,” J. Phys. F Metal Phys. 17, 277–287 (1987).
    [CrossRef]
  21. H. Raether, “The dispersion relation of surface plasmons on rough surfaces; a comment on roughness data,” Surf. Sci. 125, 624–634 (1983).
    [CrossRef]

1996 (1)

C. Ronot-Trioli, A. Trouillet, C. Veillas, A. El-Shaikh, H. Gagnaire, “Fibre optic chemical sensor based on surface plasmon monochromatic excitation,” Anal. Chim. Acta 319, 121–127 (1996).
[CrossRef]

1993 (1)

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

1991 (1)

X. Sun, S. Shiokawa, Y. Matsui, “Interactions of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69, 362–366 (1991).
[CrossRef]

1990 (1)

1988 (3)

1987 (1)

R. A. Innes, J. R. Sambles, “Optical characterisation of gold using surface-plasmon polaritons,” J. Phys. F Metal Phys. 17, 277–287 (1987).
[CrossRef]

1986 (1)

K. Kurosawa, R. M. Pierce, S. Ushioda, J. C. Hemminger, “Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons,” Phys. Rev. B 33, 789–798 (1986).
[CrossRef]

1985 (1)

C. E. Reed, J. Giergiel, S. Ushioda, “Effects of annealing on the attenuated-total-reflection spectra of cold-evaporated silver films,” Phys. Rev. B 31, 1873–1880 (1985).
[CrossRef]

1984 (1)

H. Gugger, M. Jurich, J. D. Swalen, “Observation of an index-of-refraction-induced change in the Drude parameters of Ag films,” Phys. Rev. B 30, 4189–4195 (1984).
[CrossRef]

1983 (2)

1981 (2)

1979 (1)

T. Lopez-Rios, G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81, 529–538 (1979).
[CrossRef]

1975 (1)

W. H. Weber, S. L. McCarthy, “Surface-plasmon resonance as a sensitive optical probe of metal-film properties,” Phys. Rev. B 12, 5643–5650 (1975).
[CrossRef]

1974 (1)

W. H. Weber, S. L. MaCarthy, “Anomalies in the surface plasmon resonance excitation at both surfaces of evaporated metal films,” Appl. Phys. Lett. 25, 396–398 (1974).
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1954 (1)

Alexander, R. W.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Cao, Z.

Chen, J. M.

Chen, W. P.

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

de Bruijin, H. E.

El-Shaikh, A.

C. Ronot-Trioli, A. Trouillet, C. Veillas, A. El-Shaikh, H. Gagnaire, “Fibre optic chemical sensor based on surface plasmon monochromatic excitation,” Anal. Chim. Acta 319, 121–127 (1996).
[CrossRef]

Fang, J.

Fontana, E.

E. Fontana, R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface plasmon spectroscopy,” Phys. Rev. B 37, 3164–3182 (1988).
[CrossRef]

E. Fontana, R. H. Pantell, M. Moslehi, “Characterization of dielectric-coated, metal mirrors using surface plasmon spectroscopy,” Appl. Opt. 27, 3334–3340 (1988).
[CrossRef] [PubMed]

Gagnaire, A.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, H. Gagnaire, “The effects of polarization of the incident light—modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A (to be published).

Gagnaire, H.

C. Ronot-Trioli, A. Trouillet, C. Veillas, A. El-Shaikh, H. Gagnaire, “Fibre optic chemical sensor based on surface plasmon monochromatic excitation,” Anal. Chim. Acta 319, 121–127 (1996).
[CrossRef]

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, H. Gagnaire, “The effects of polarization of the incident light—modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A (to be published).

Giergiel, J.

C. E. Reed, J. Giergiel, S. Ushioda, “Effects of annealing on the attenuated-total-reflection spectra of cold-evaporated silver films,” Phys. Rev. B 31, 1873–1880 (1985).
[CrossRef]

Greve, J.

Gugger, H.

H. Gugger, M. Jurich, J. D. Swalen, “Observation of an index-of-refraction-induced change in the Drude parameters of Ag films,” Phys. Rev. B 30, 4189–4195 (1984).
[CrossRef]

Hemminger, J. C.

K. Kurosawa, R. M. Pierce, S. Ushioda, J. C. Hemminger, “Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons,” Phys. Rev. B 33, 789–798 (1986).
[CrossRef]

Hieda, K.

Innes, R. A.

R. A. Innes, J. R. Sambles, “Optical characterisation of gold using surface-plasmon polaritons,” J. Phys. F Metal Phys. 17, 277–287 (1987).
[CrossRef]

Jaffrezic-Renault, N.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, H. Gagnaire, “The effects of polarization of the incident light—modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A (to be published).

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Jurich, M.

H. Gugger, M. Jurich, J. D. Swalen, “Observation of an index-of-refraction-induced change in the Drude parameters of Ag films,” Phys. Rev. B 30, 4189–4195 (1984).
[CrossRef]

Kitajima, H.

Kooyman, R. P. H.

Kurosawa, K.

K. Kurosawa, R. M. Pierce, S. Ushioda, J. C. Hemminger, “Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons,” Phys. Rev. B 33, 789–798 (1986).
[CrossRef]

Lin, W. B.

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, H. Gagnaire, “The effects of polarization of the incident light—modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A (to be published).

Long, L. L.

Lopez-Rios, T.

T. Lopez-Rios, G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81, 529–538 (1979).
[CrossRef]

MaCarthy, S. L.

W. H. Weber, S. L. MaCarthy, “Anomalies in the surface plasmon resonance excitation at both surfaces of evaporated metal films,” Appl. Phys. Lett. 25, 396–398 (1974).
[CrossRef]

Matsui, Y.

X. Sun, S. Shiokawa, Y. Matsui, “Interactions of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69, 362–366 (1991).
[CrossRef]

McCarthy, S. L.

W. H. Weber, S. L. McCarthy, “Surface-plasmon resonance as a sensitive optical probe of metal-film properties,” Phys. Rev. B 12, 5643–5650 (1975).
[CrossRef]

Moslehi, M.

Ordal, M. A.

Pantell, R. H.

E. Fontana, R. H. Pantell, M. Moslehi, “Characterization of dielectric-coated, metal mirrors using surface plasmon spectroscopy,” Appl. Opt. 27, 3334–3340 (1988).
[CrossRef] [PubMed]

E. Fontana, R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface plasmon spectroscopy,” Phys. Rev. B 37, 3164–3182 (1988).
[CrossRef]

Pierce, R. M.

K. Kurosawa, R. M. Pierce, S. Ushioda, J. C. Hemminger, “Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons,” Phys. Rev. B 33, 789–798 (1986).
[CrossRef]

Raether, H.

H. Raether, “The dispersion relation of surface plasmons on rough surfaces; a comment on roughness data,” Surf. Sci. 125, 624–634 (1983).
[CrossRef]

Reed, C. E.

C. E. Reed, J. Giergiel, S. Ushioda, “Effects of annealing on the attenuated-total-reflection spectra of cold-evaporated silver films,” Phys. Rev. B 31, 1873–1880 (1985).
[CrossRef]

Ronot-Trioli, C.

C. Ronot-Trioli, A. Trouillet, C. Veillas, A. El-Shaikh, H. Gagnaire, “Fibre optic chemical sensor based on surface plasmon monochromatic excitation,” Anal. Chim. Acta 319, 121–127 (1996).
[CrossRef]

Sambles, J. R.

R. A. Innes, J. R. Sambles, “Optical characterisation of gold using surface-plasmon polaritons,” J. Phys. F Metal Phys. 17, 277–287 (1987).
[CrossRef]

Schulz, L. G.

Shiokawa, S.

X. Sun, S. Shiokawa, Y. Matsui, “Interactions of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69, 362–366 (1991).
[CrossRef]

Suematsu, Y.

Sun, X.

X. Sun, S. Shiokawa, Y. Matsui, “Interactions of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69, 362–366 (1991).
[CrossRef]

Swalen, J. D.

H. Gugger, M. Jurich, J. D. Swalen, “Observation of an index-of-refraction-induced change in the Drude parameters of Ag films,” Phys. Rev. B 30, 4189–4195 (1984).
[CrossRef]

Trouillet, A.

C. Ronot-Trioli, A. Trouillet, C. Veillas, A. El-Shaikh, H. Gagnaire, “Fibre optic chemical sensor based on surface plasmon monochromatic excitation,” Anal. Chim. Acta 319, 121–127 (1996).
[CrossRef]

Ushioda, S.

K. Kurosawa, R. M. Pierce, S. Ushioda, J. C. Hemminger, “Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons,” Phys. Rev. B 33, 789–798 (1986).
[CrossRef]

C. E. Reed, J. Giergiel, S. Ushioda, “Effects of annealing on the attenuated-total-reflection spectra of cold-evaporated silver films,” Phys. Rev. B 31, 1873–1880 (1985).
[CrossRef]

Veillas, C.

C. Ronot-Trioli, A. Trouillet, C. Veillas, A. El-Shaikh, H. Gagnaire, “Fibre optic chemical sensor based on surface plasmon monochromatic excitation,” Anal. Chim. Acta 319, 121–127 (1996).
[CrossRef]

Vuye, G.

T. Lopez-Rios, G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81, 529–538 (1979).
[CrossRef]

Ward, C. A.

Weber, W. H.

W. H. Weber, S. L. McCarthy, “Surface-plasmon resonance as a sensitive optical probe of metal-film properties,” Phys. Rev. B 12, 5643–5650 (1975).
[CrossRef]

W. H. Weber, S. L. MaCarthy, “Anomalies in the surface plasmon resonance excitation at both surfaces of evaporated metal films,” Appl. Phys. Lett. 25, 396–398 (1974).
[CrossRef]

Yang, F.

Yee, S. S.

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Anal. Chim. Acta (1)

C. Ronot-Trioli, A. Trouillet, C. Veillas, A. El-Shaikh, H. Gagnaire, “Fibre optic chemical sensor based on surface plasmon monochromatic excitation,” Anal. Chim. Acta 319, 121–127 (1996).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

W. H. Weber, S. L. MaCarthy, “Anomalies in the surface plasmon resonance excitation at both surfaces of evaporated metal films,” Appl. Phys. Lett. 25, 396–398 (1974).
[CrossRef]

J. Appl. Phys. (1)

X. Sun, S. Shiokawa, Y. Matsui, “Interactions of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys. 69, 362–366 (1991).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Phys. F Metal Phys. (1)

R. A. Innes, J. R. Sambles, “Optical characterisation of gold using surface-plasmon polaritons,” J. Phys. F Metal Phys. 17, 277–287 (1987).
[CrossRef]

Phys. Rev. B (6)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

K. Kurosawa, R. M. Pierce, S. Ushioda, J. C. Hemminger, “Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons,” Phys. Rev. B 33, 789–798 (1986).
[CrossRef]

W. H. Weber, S. L. McCarthy, “Surface-plasmon resonance as a sensitive optical probe of metal-film properties,” Phys. Rev. B 12, 5643–5650 (1975).
[CrossRef]

E. Fontana, R. H. Pantell, “Characterization of multilayer rough surfaces by use of surface plasmon spectroscopy,” Phys. Rev. B 37, 3164–3182 (1988).
[CrossRef]

H. Gugger, M. Jurich, J. D. Swalen, “Observation of an index-of-refraction-induced change in the Drude parameters of Ag films,” Phys. Rev. B 30, 4189–4195 (1984).
[CrossRef]

C. E. Reed, J. Giergiel, S. Ushioda, “Effects of annealing on the attenuated-total-reflection spectra of cold-evaporated silver films,” Phys. Rev. B 31, 1873–1880 (1985).
[CrossRef]

Sens. Actuators B (1)

R. C. Jorgenson, S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Surf. Sci. (2)

T. Lopez-Rios, G. Vuye, “Use of surface plasmon excitation for determination of the thickness and optical constants of very thin surface layers,” Surf. Sci. 81, 529–538 (1979).
[CrossRef]

H. Raether, “The dispersion relation of surface plasmons on rough surfaces; a comment on roughness data,” Surf. Sci. 125, 624–634 (1983).
[CrossRef]

Other (1)

W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, H. Gagnaire, “The effects of polarization of the incident light—modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators A (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Schematic representation of the vacuum chamber for evaporation.

Fig. 3
Fig. 3

The least-squares fitting for determining the imaginary part of the refractive index of the cladding.

Fig. 4
Fig. 4

Numerical fitting of experimental curves measured in aqueous media with refractive indices of 1.34, 1.35, 1.36, and 1.37 for determining the metal-film parameters (light wavelength of 670 nm and a maximal deviation of 0.015 between the measurements and the computations).

Fig. 5
Fig. 5

Contour maps of the objective function plotted versus (a) d and ∊ r at ∊ i = 1.31, (b) d and ∊ i at ∊ r = -15.89, (c) ∊ r and ∊ i at d = 619 Å.

Fig. 6
Fig. 6

Numerical fitting of experimental curves measured in aqueous media with refractive indices of 1.34, 1.35, 1.36, and 1.37 for determining the metal-film parameters (light wavelength of 658 nm and a maximal deviation of 0.014 between the measurements and the computations).

Fig. 7
Fig. 7

Comparison of our results of dielectric constants at wavelengths of 658 and 670 nm (the open circles) with those of Schulz3 (the short-dashed–long-dashed curves with crosses) and of Innes and Sambles20 (the dashed curves with plus signs).

Metrics