Abstract

Stereoscopic head-mounted displays (HMD’s) provide an effective capability to create dynamic virtual environments. For a user of such environments, virtual objects would be displayed ideally at the appropriate distances, and natural concordant accommodation and convergence would be provided. Under such image display conditions, the user perceives these objects as if they were objects in a real environment. Current HMD technology requires convergent eye movements. However, it is currently limited by fixed visual accommodation, which is inconsistent with real-world vision. A prototype multiplanar volumetric projection display based on a stack of laminated planes was built for medical visualization as discussed in a paper presented at a 1999 Advanced Research Projects Agency workshop (Sullivan, Advanced Research Projects Agency, Arlington, Va., 1999). We show how such technology can be engineered to create a set of virtual planes appropriately configured in visual space to suppress conflicts of convergence and accommodation in HMD’s. Although some scanning mechanism could be employed to create a set of desirable planes from a two-dimensional conventional display, multiplanar technology accomplishes such function with no moving parts. Based on optical principles and human vision, we present a comprehensive investigation of the engineering specification of multiplanar technology for integration in HMD’s. Using selected human visual acuity and stereoacuity criteria, we show that the display requires at most 27 equally spaced planes, which is within the capability of current research and development display devices, located within a maximal 26-mm-wide stack. We further show that the necessary in-plane resolution is of the order of 5 µm.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. Kocian, “Design considerations for virtual panoramic display (VPD) helmet systems,” Armstrong Aerospace Medical Research Laboratory, Visual Display Systems Branch (Wright-Patterson Air Force Base, Dayton, Ohio, 1988).
  2. M. L. Thomas, R. Robinson, W. P. Siegmund, S. E. Antos, “Fiber optic development for use on the fiber optic helmet-mounted display,” Opt. Eng. 29, 855–862 (1990).
    [CrossRef]
  3. A. Arditi, “Binocular vision,” in Handbook of Perception and Human Performance (Wiley Interscience, New York, 1986), Chap. 23, p. 32.
  4. J. Siderov, R. S. Harwerth, “Precision of stereoscopic depth perception from double images,” Vision Res. 33, 1553–1560 (1993).
    [CrossRef] [PubMed]
  5. C. Roumes, J. Plantier, J. P. Menu, “L’avenir est-il au visual de casque binoculaire?” in AGARD CP 517 (Advisory Group for Aerospace Research and Development, Paris, France, 1992), Vol. 11, pp. 11–19.
  6. J. Wann, S. Rushton, M. Mon-Williams, “Natural problems in the perception of virtual environments,” Vision Res. 35, 2731–2736 (1995).
    [CrossRef] [PubMed]
  7. J. P. Rolland, W. Gibson, D. Ariely, “Towards quantifying depth and size perception in virtual environments,” Presence: Teleoperators Virtual Environ. 4(1), 24–29 (1995).
  8. W. Robinett, J. P. Rolland, “A computational model for the stereoscopic optics of a head-mounted display,” Presence: Teleoperators Virtual Environ. 1(1), 45–62 (1992).
  9. E. Peli, “Real vision and virtual reality,” Opt. Photon. News, July1995, pp. 28–34.
  10. M. Mon-Williams, J. P. Wann, S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of head-mounted displays,” Ophthalmic Physiol. Opt. 13, 387–391 (1993).
    [CrossRef] [PubMed]
  11. W. C. Gogel, J. D. Tietz, “Relative cues and absolute distance perception,” Percept. and Psychophys. 28, 321–328 (1980).
    [CrossRef]
  12. H. A. Sedgwick, “Space perception,” in Handbook of Perception and Human Performance (Wiley Interscience, New York, 1986), Chap. 4, p. 6.
  13. J. Foley, A. vanDam, S. Feiner, J. Hughes, Computer Graphics: Principles and Practice, 2nd ed. (Addison-Wesley, Reading, Mass., 1990).
  14. J. P. Rolland, A. Yoshida, L. Davis, J. H. Reif, “High-resolution inset head-mounted display,” Appl. Opt. 37, 4183–4193 (1998).
    [CrossRef]
  15. L. Vaissie, J. P. Rolland, “Eye-tracking integration in head-mounted displays,” U.S. patent (Filed 23December1999).
  16. J. P. Rolland, L. Vaissie, G. Bochenek, “Analysis of eyepoint locations and accuracy of rendered depth in binocular head-mounted displays,” in Stereoscopic Displays and Virtual Reality Systems VI, J. O. Merritt, M. T. Bolas, S. S. Fisher, eds., Proc. SPIE3639A, 57–64 (1999).
  17. J. P. Wann, S. K. Rushton, M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35, 2731–2736 (1995).
    [CrossRef] [PubMed]
  18. L. Marran, C. Schor, “Multiaccommodative stimuli in VR systems: problems and solutions,” Hum. Factors 37, 382–388 (1997).
    [CrossRef]
  19. E. Dolgoff, “Real-depth imaging,” SID Digest 28, 269–272 (1997).
  20. A. F. Crabtree, “Method and apparatus for manipulating, projecting, and displaying light in a volumetric format,” U.S. patent5,572,375 (5November1996).
  21. A. Sullivan, “Progress report on multiplanar volumetric displays,” presented at the Defense Advanced Research Projects Agency Biomedical Computing Workshop, Innovative Modeling & Advanced Generation of Environments Conference, Scottsdale, Ariz., 14–18 July 1997.
  22. J. D. Lewis, C. M. Verber, R. B. MacGhee, “A true three-dimensional display,” IEEE Trans. Electron Devices 18, 724–732 (1971).
    [CrossRef]
  23. E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
    [CrossRef]
  24. I. I. Kim, E. Korevar, H. Hakakha, “Three-dimensional volumetric display in rubidium vapor,” in Projection Displays II, M. H. Wu, ed., Proc. SPIE2650, 274–284 (1996).
    [CrossRef]
  25. A. Sullivan, “Multiplanar volumetric displays for medical visualization,” presented at Medicine Meets Virtual Reality ’99, Advanced Research Projects Agency Workshop, San Francisco, 20 Jan. 1999.
  26. R. W. Reading, Binocular Vision: Foundations and Applications (Butterworths, London, 1983), pp. 110–128.
  27. A. Lit, J. P. Finn, “Variability of depth-discrimination thresholds as a function of observation distance,” J. Opt. Soc. Am. A 66, 740–742 (1976).
    [CrossRef]

1998 (1)

1997 (2)

L. Marran, C. Schor, “Multiaccommodative stimuli in VR systems: problems and solutions,” Hum. Factors 37, 382–388 (1997).
[CrossRef]

E. Dolgoff, “Real-depth imaging,” SID Digest 28, 269–272 (1997).

1996 (1)

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

1995 (4)

J. P. Wann, S. K. Rushton, M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35, 2731–2736 (1995).
[CrossRef] [PubMed]

E. Peli, “Real vision and virtual reality,” Opt. Photon. News, July1995, pp. 28–34.

J. Wann, S. Rushton, M. Mon-Williams, “Natural problems in the perception of virtual environments,” Vision Res. 35, 2731–2736 (1995).
[CrossRef] [PubMed]

J. P. Rolland, W. Gibson, D. Ariely, “Towards quantifying depth and size perception in virtual environments,” Presence: Teleoperators Virtual Environ. 4(1), 24–29 (1995).

1993 (2)

J. Siderov, R. S. Harwerth, “Precision of stereoscopic depth perception from double images,” Vision Res. 33, 1553–1560 (1993).
[CrossRef] [PubMed]

M. Mon-Williams, J. P. Wann, S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of head-mounted displays,” Ophthalmic Physiol. Opt. 13, 387–391 (1993).
[CrossRef] [PubMed]

1992 (1)

W. Robinett, J. P. Rolland, “A computational model for the stereoscopic optics of a head-mounted display,” Presence: Teleoperators Virtual Environ. 1(1), 45–62 (1992).

1990 (1)

M. L. Thomas, R. Robinson, W. P. Siegmund, S. E. Antos, “Fiber optic development for use on the fiber optic helmet-mounted display,” Opt. Eng. 29, 855–862 (1990).
[CrossRef]

1980 (1)

W. C. Gogel, J. D. Tietz, “Relative cues and absolute distance perception,” Percept. and Psychophys. 28, 321–328 (1980).
[CrossRef]

1976 (1)

A. Lit, J. P. Finn, “Variability of depth-discrimination thresholds as a function of observation distance,” J. Opt. Soc. Am. A 66, 740–742 (1976).
[CrossRef]

1971 (1)

J. D. Lewis, C. M. Verber, R. B. MacGhee, “A true three-dimensional display,” IEEE Trans. Electron Devices 18, 724–732 (1971).
[CrossRef]

Antos, S. E.

M. L. Thomas, R. Robinson, W. P. Siegmund, S. E. Antos, “Fiber optic development for use on the fiber optic helmet-mounted display,” Opt. Eng. 29, 855–862 (1990).
[CrossRef]

Arditi, A.

A. Arditi, “Binocular vision,” in Handbook of Perception and Human Performance (Wiley Interscience, New York, 1986), Chap. 23, p. 32.

Ariely, D.

J. P. Rolland, W. Gibson, D. Ariely, “Towards quantifying depth and size perception in virtual environments,” Presence: Teleoperators Virtual Environ. 4(1), 24–29 (1995).

Bochenek, G.

J. P. Rolland, L. Vaissie, G. Bochenek, “Analysis of eyepoint locations and accuracy of rendered depth in binocular head-mounted displays,” in Stereoscopic Displays and Virtual Reality Systems VI, J. O. Merritt, M. T. Bolas, S. S. Fisher, eds., Proc. SPIE3639A, 57–64 (1999).

Crabtree, A. F.

A. F. Crabtree, “Method and apparatus for manipulating, projecting, and displaying light in a volumetric format,” U.S. patent5,572,375 (5November1996).

Davis, L.

Dolgoff, E.

E. Dolgoff, “Real-depth imaging,” SID Digest 28, 269–272 (1997).

Downing, E.

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Feiner, S.

J. Foley, A. vanDam, S. Feiner, J. Hughes, Computer Graphics: Principles and Practice, 2nd ed. (Addison-Wesley, Reading, Mass., 1990).

Finn, J. P.

A. Lit, J. P. Finn, “Variability of depth-discrimination thresholds as a function of observation distance,” J. Opt. Soc. Am. A 66, 740–742 (1976).
[CrossRef]

Foley, J.

J. Foley, A. vanDam, S. Feiner, J. Hughes, Computer Graphics: Principles and Practice, 2nd ed. (Addison-Wesley, Reading, Mass., 1990).

Gibson, W.

J. P. Rolland, W. Gibson, D. Ariely, “Towards quantifying depth and size perception in virtual environments,” Presence: Teleoperators Virtual Environ. 4(1), 24–29 (1995).

Gogel, W. C.

W. C. Gogel, J. D. Tietz, “Relative cues and absolute distance perception,” Percept. and Psychophys. 28, 321–328 (1980).
[CrossRef]

Hakakha, H.

I. I. Kim, E. Korevar, H. Hakakha, “Three-dimensional volumetric display in rubidium vapor,” in Projection Displays II, M. H. Wu, ed., Proc. SPIE2650, 274–284 (1996).
[CrossRef]

Harwerth, R. S.

J. Siderov, R. S. Harwerth, “Precision of stereoscopic depth perception from double images,” Vision Res. 33, 1553–1560 (1993).
[CrossRef] [PubMed]

Hesselink, L.

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Hughes, J.

J. Foley, A. vanDam, S. Feiner, J. Hughes, Computer Graphics: Principles and Practice, 2nd ed. (Addison-Wesley, Reading, Mass., 1990).

Kim, I. I.

I. I. Kim, E. Korevar, H. Hakakha, “Three-dimensional volumetric display in rubidium vapor,” in Projection Displays II, M. H. Wu, ed., Proc. SPIE2650, 274–284 (1996).
[CrossRef]

Kocian, D. F.

D. F. Kocian, “Design considerations for virtual panoramic display (VPD) helmet systems,” Armstrong Aerospace Medical Research Laboratory, Visual Display Systems Branch (Wright-Patterson Air Force Base, Dayton, Ohio, 1988).

Korevar, E.

I. I. Kim, E. Korevar, H. Hakakha, “Three-dimensional volumetric display in rubidium vapor,” in Projection Displays II, M. H. Wu, ed., Proc. SPIE2650, 274–284 (1996).
[CrossRef]

Lewis, J. D.

J. D. Lewis, C. M. Verber, R. B. MacGhee, “A true three-dimensional display,” IEEE Trans. Electron Devices 18, 724–732 (1971).
[CrossRef]

Lit, A.

A. Lit, J. P. Finn, “Variability of depth-discrimination thresholds as a function of observation distance,” J. Opt. Soc. Am. A 66, 740–742 (1976).
[CrossRef]

Macfarlane, R.

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

MacGhee, R. B.

J. D. Lewis, C. M. Verber, R. B. MacGhee, “A true three-dimensional display,” IEEE Trans. Electron Devices 18, 724–732 (1971).
[CrossRef]

Marran, L.

L. Marran, C. Schor, “Multiaccommodative stimuli in VR systems: problems and solutions,” Hum. Factors 37, 382–388 (1997).
[CrossRef]

Menu, J. P.

C. Roumes, J. Plantier, J. P. Menu, “L’avenir est-il au visual de casque binoculaire?” in AGARD CP 517 (Advisory Group for Aerospace Research and Development, Paris, France, 1992), Vol. 11, pp. 11–19.

Mon-Williams, M.

J. Wann, S. Rushton, M. Mon-Williams, “Natural problems in the perception of virtual environments,” Vision Res. 35, 2731–2736 (1995).
[CrossRef] [PubMed]

J. P. Wann, S. K. Rushton, M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35, 2731–2736 (1995).
[CrossRef] [PubMed]

M. Mon-Williams, J. P. Wann, S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of head-mounted displays,” Ophthalmic Physiol. Opt. 13, 387–391 (1993).
[CrossRef] [PubMed]

Peli, E.

E. Peli, “Real vision and virtual reality,” Opt. Photon. News, July1995, pp. 28–34.

Plantier, J.

C. Roumes, J. Plantier, J. P. Menu, “L’avenir est-il au visual de casque binoculaire?” in AGARD CP 517 (Advisory Group for Aerospace Research and Development, Paris, France, 1992), Vol. 11, pp. 11–19.

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Reading, R. W.

R. W. Reading, Binocular Vision: Foundations and Applications (Butterworths, London, 1983), pp. 110–128.

Reif, J. H.

Robinett, W.

W. Robinett, J. P. Rolland, “A computational model for the stereoscopic optics of a head-mounted display,” Presence: Teleoperators Virtual Environ. 1(1), 45–62 (1992).

Robinson, R.

M. L. Thomas, R. Robinson, W. P. Siegmund, S. E. Antos, “Fiber optic development for use on the fiber optic helmet-mounted display,” Opt. Eng. 29, 855–862 (1990).
[CrossRef]

Rolland, J. P.

J. P. Rolland, A. Yoshida, L. Davis, J. H. Reif, “High-resolution inset head-mounted display,” Appl. Opt. 37, 4183–4193 (1998).
[CrossRef]

J. P. Rolland, W. Gibson, D. Ariely, “Towards quantifying depth and size perception in virtual environments,” Presence: Teleoperators Virtual Environ. 4(1), 24–29 (1995).

W. Robinett, J. P. Rolland, “A computational model for the stereoscopic optics of a head-mounted display,” Presence: Teleoperators Virtual Environ. 1(1), 45–62 (1992).

J. P. Rolland, L. Vaissie, G. Bochenek, “Analysis of eyepoint locations and accuracy of rendered depth in binocular head-mounted displays,” in Stereoscopic Displays and Virtual Reality Systems VI, J. O. Merritt, M. T. Bolas, S. S. Fisher, eds., Proc. SPIE3639A, 57–64 (1999).

L. Vaissie, J. P. Rolland, “Eye-tracking integration in head-mounted displays,” U.S. patent (Filed 23December1999).

Roumes, C.

C. Roumes, J. Plantier, J. P. Menu, “L’avenir est-il au visual de casque binoculaire?” in AGARD CP 517 (Advisory Group for Aerospace Research and Development, Paris, France, 1992), Vol. 11, pp. 11–19.

Rushton, S.

J. Wann, S. Rushton, M. Mon-Williams, “Natural problems in the perception of virtual environments,” Vision Res. 35, 2731–2736 (1995).
[CrossRef] [PubMed]

M. Mon-Williams, J. P. Wann, S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of head-mounted displays,” Ophthalmic Physiol. Opt. 13, 387–391 (1993).
[CrossRef] [PubMed]

Rushton, S. K.

J. P. Wann, S. K. Rushton, M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35, 2731–2736 (1995).
[CrossRef] [PubMed]

Schor, C.

L. Marran, C. Schor, “Multiaccommodative stimuli in VR systems: problems and solutions,” Hum. Factors 37, 382–388 (1997).
[CrossRef]

Sedgwick, H. A.

H. A. Sedgwick, “Space perception,” in Handbook of Perception and Human Performance (Wiley Interscience, New York, 1986), Chap. 4, p. 6.

Siderov, J.

J. Siderov, R. S. Harwerth, “Precision of stereoscopic depth perception from double images,” Vision Res. 33, 1553–1560 (1993).
[CrossRef] [PubMed]

Siegmund, W. P.

M. L. Thomas, R. Robinson, W. P. Siegmund, S. E. Antos, “Fiber optic development for use on the fiber optic helmet-mounted display,” Opt. Eng. 29, 855–862 (1990).
[CrossRef]

Sullivan, A.

A. Sullivan, “Progress report on multiplanar volumetric displays,” presented at the Defense Advanced Research Projects Agency Biomedical Computing Workshop, Innovative Modeling & Advanced Generation of Environments Conference, Scottsdale, Ariz., 14–18 July 1997.

A. Sullivan, “Multiplanar volumetric displays for medical visualization,” presented at Medicine Meets Virtual Reality ’99, Advanced Research Projects Agency Workshop, San Francisco, 20 Jan. 1999.

Thomas, M. L.

M. L. Thomas, R. Robinson, W. P. Siegmund, S. E. Antos, “Fiber optic development for use on the fiber optic helmet-mounted display,” Opt. Eng. 29, 855–862 (1990).
[CrossRef]

Tietz, J. D.

W. C. Gogel, J. D. Tietz, “Relative cues and absolute distance perception,” Percept. and Psychophys. 28, 321–328 (1980).
[CrossRef]

Vaissie, L.

J. P. Rolland, L. Vaissie, G. Bochenek, “Analysis of eyepoint locations and accuracy of rendered depth in binocular head-mounted displays,” in Stereoscopic Displays and Virtual Reality Systems VI, J. O. Merritt, M. T. Bolas, S. S. Fisher, eds., Proc. SPIE3639A, 57–64 (1999).

L. Vaissie, J. P. Rolland, “Eye-tracking integration in head-mounted displays,” U.S. patent (Filed 23December1999).

vanDam, A.

J. Foley, A. vanDam, S. Feiner, J. Hughes, Computer Graphics: Principles and Practice, 2nd ed. (Addison-Wesley, Reading, Mass., 1990).

Verber, C. M.

J. D. Lewis, C. M. Verber, R. B. MacGhee, “A true three-dimensional display,” IEEE Trans. Electron Devices 18, 724–732 (1971).
[CrossRef]

Wann, J.

J. Wann, S. Rushton, M. Mon-Williams, “Natural problems in the perception of virtual environments,” Vision Res. 35, 2731–2736 (1995).
[CrossRef] [PubMed]

Wann, J. P.

J. P. Wann, S. K. Rushton, M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35, 2731–2736 (1995).
[CrossRef] [PubMed]

M. Mon-Williams, J. P. Wann, S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of head-mounted displays,” Ophthalmic Physiol. Opt. 13, 387–391 (1993).
[CrossRef] [PubMed]

Yoshida, A.

Appl. Opt. (1)

Hum. Factors (1)

L. Marran, C. Schor, “Multiaccommodative stimuli in VR systems: problems and solutions,” Hum. Factors 37, 382–388 (1997).
[CrossRef]

IEEE Trans. Electron Devices (1)

J. D. Lewis, C. M. Verber, R. B. MacGhee, “A true three-dimensional display,” IEEE Trans. Electron Devices 18, 724–732 (1971).
[CrossRef]

J. Opt. Soc. Am. A (1)

A. Lit, J. P. Finn, “Variability of depth-discrimination thresholds as a function of observation distance,” J. Opt. Soc. Am. A 66, 740–742 (1976).
[CrossRef]

Ophthalmic Physiol. Opt. (1)

M. Mon-Williams, J. P. Wann, S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of head-mounted displays,” Ophthalmic Physiol. Opt. 13, 387–391 (1993).
[CrossRef] [PubMed]

Opt. Eng. (1)

M. L. Thomas, R. Robinson, W. P. Siegmund, S. E. Antos, “Fiber optic development for use on the fiber optic helmet-mounted display,” Opt. Eng. 29, 855–862 (1990).
[CrossRef]

Opt. Photon. News (1)

E. Peli, “Real vision and virtual reality,” Opt. Photon. News, July1995, pp. 28–34.

Percept. and Psychophys. (1)

W. C. Gogel, J. D. Tietz, “Relative cues and absolute distance perception,” Percept. and Psychophys. 28, 321–328 (1980).
[CrossRef]

Presence: Teleoperators Virtual Environ. (2)

J. P. Rolland, W. Gibson, D. Ariely, “Towards quantifying depth and size perception in virtual environments,” Presence: Teleoperators Virtual Environ. 4(1), 24–29 (1995).

W. Robinett, J. P. Rolland, “A computational model for the stereoscopic optics of a head-mounted display,” Presence: Teleoperators Virtual Environ. 1(1), 45–62 (1992).

Science (1)

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

SID Digest (1)

E. Dolgoff, “Real-depth imaging,” SID Digest 28, 269–272 (1997).

Vision Res. (3)

J. Wann, S. Rushton, M. Mon-Williams, “Natural problems in the perception of virtual environments,” Vision Res. 35, 2731–2736 (1995).
[CrossRef] [PubMed]

J. Siderov, R. S. Harwerth, “Precision of stereoscopic depth perception from double images,” Vision Res. 33, 1553–1560 (1993).
[CrossRef] [PubMed]

J. P. Wann, S. K. Rushton, M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35, 2731–2736 (1995).
[CrossRef] [PubMed]

Other (12)

I. I. Kim, E. Korevar, H. Hakakha, “Three-dimensional volumetric display in rubidium vapor,” in Projection Displays II, M. H. Wu, ed., Proc. SPIE2650, 274–284 (1996).
[CrossRef]

A. Sullivan, “Multiplanar volumetric displays for medical visualization,” presented at Medicine Meets Virtual Reality ’99, Advanced Research Projects Agency Workshop, San Francisco, 20 Jan. 1999.

R. W. Reading, Binocular Vision: Foundations and Applications (Butterworths, London, 1983), pp. 110–128.

C. Roumes, J. Plantier, J. P. Menu, “L’avenir est-il au visual de casque binoculaire?” in AGARD CP 517 (Advisory Group for Aerospace Research and Development, Paris, France, 1992), Vol. 11, pp. 11–19.

A. Arditi, “Binocular vision,” in Handbook of Perception and Human Performance (Wiley Interscience, New York, 1986), Chap. 23, p. 32.

D. F. Kocian, “Design considerations for virtual panoramic display (VPD) helmet systems,” Armstrong Aerospace Medical Research Laboratory, Visual Display Systems Branch (Wright-Patterson Air Force Base, Dayton, Ohio, 1988).

A. F. Crabtree, “Method and apparatus for manipulating, projecting, and displaying light in a volumetric format,” U.S. patent5,572,375 (5November1996).

A. Sullivan, “Progress report on multiplanar volumetric displays,” presented at the Defense Advanced Research Projects Agency Biomedical Computing Workshop, Innovative Modeling & Advanced Generation of Environments Conference, Scottsdale, Ariz., 14–18 July 1997.

H. A. Sedgwick, “Space perception,” in Handbook of Perception and Human Performance (Wiley Interscience, New York, 1986), Chap. 4, p. 6.

J. Foley, A. vanDam, S. Feiner, J. Hughes, Computer Graphics: Principles and Practice, 2nd ed. (Addison-Wesley, Reading, Mass., 1990).

L. Vaissie, J. P. Rolland, “Eye-tracking integration in head-mounted displays,” U.S. patent (Filed 23December1999).

J. P. Rolland, L. Vaissie, G. Bochenek, “Analysis of eyepoint locations and accuracy of rendered depth in binocular head-mounted displays,” in Stereoscopic Displays and Virtual Reality Systems VI, J. O. Merritt, M. T. Bolas, S. S. Fisher, eds., Proc. SPIE3639A, 57–64 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of multifocal planes HMD.

Fig. 2
Fig. 2

Basic layout of the imaging optics in a HMD.

Fig. 3
Fig. 3

Location of the planes of fixation for accommodation based on the computed depth of focus planes for the human visual system. A visual acuity of 1 arc min is assumed. Both schemes starting from Lm equal 0.5 m to infinity (i.e., solid curve decreasing from left to right) and from infinity to 0.5 m (i.e., solid curve increasing from left to right) were considered. In both cases, we find that 27 planes are required for a range of accommodation from infinity to 0.5 m. A few of these planes are represented as horizontal lines in the figure.

Fig. 4
Fig. 4

Interplane spacing as a function of the focus plane number for three different values of the effective focal length (EFL).

Fig. 5
Fig. 5

Number of resolvable depth units as a function of stereoacuity for three values of the user interocular distance.

Fig. 6
Fig. 6

Display resolution requirements. (a) Plot of the display resolution required as a function of the distance of accommodation L for three values of the effective focal length (EFL): 15, 50, and 90 mm. The stereoacuity threshold δ is 30 arc sec in this computation. (b) Plot of the display resolution required as a function of the distance of accommodation L for three values of the stereoacuity threshold δ: 2, 30, and 130 arc sec. In this case the focal length is set to 50 mm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

nx=nx-nf,
dx=xLm-f=-f2f+Lm-ER.
|dL±|=|ηL2d±ηL|.
δ±=±Δl IODLΔlL,
|Δl±|=|δ|L2IOD±|δ|L.
Lk=Lk-1+Δlk-1=Lk-1+|δ|L2k-1IOD+|δ|Lk-1.
p=IOD2L+Δl1+Lf|δ|L2IOD-|δ|L.

Metrics