Abstract

An alternative method for attenuation measurement of infrared (IR) fibers is described. The method includes a simple technique for direct laser-to-fiber coupling with an uncoated glass hollow taper. The operating principle of the hollow taper is based on the grazing-incidence effect of light reflection. The hollow taper forms a smooth Gaussian-shaped profile of the output laser emission and provides the proper conditions for equilibrium-mode distribution of optical power within the test IR fibers. The experimental hollow-taper-based coupling method is used for measurement of attenuation and bending losses of various kinds of IR fiber, including solid-core (fluoride, chalcogenide, and germanium-doped) and hollow fibers.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sanghera, I. Aggarwal, eds., Infrared Fiber Optics, (CRC Press, Boca Raton, Fla., 1998).
  2. M. Miyagi, S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).
    [CrossRef] [PubMed]
  3. K. Matsuura, Y. Matsuura, J. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
    [CrossRef]
  4. J. Nisshi, T. Yamashida, T. Yamagishi, “Low-loss chalcogenide glass fiber with core-cladding structure,” Appl. Phys. Lett. 53, 553–554 (1988).
    [CrossRef]
  5. N. Groitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
    [CrossRef]
  6. C. Rabii, J. Harrington, “Mechanical properties of hollow glass waveguides,” Opt. Eng. 38, 1490–1499 (1999).
    [CrossRef]
  7. J. Harrington, C. Rabii, D. Gibson, “Transmission properties of hollow glass waveguides for the delivery of CO2 surgical laser power,” IEEE J. Sel. Top. Quantum Electron. 5, 948–953 (1999).
    [CrossRef]
  8. G. Chamberlain, G. Day, D. Franzen, R. Gallawa, E. Kim, M. Young, Optical Fiber Characterization, (National Bureau of Standards, Washington, D.C., 1983), Vol. 2.
  9. S. Miller, A. Chynoweth, eds., Optical Fiber Telecommunications (Academic, New York, 1989).
  10. F. Allard, ed., Fiber Optics Handbook: For Engineers and Scientists (McGraw-Hill, New York, 1990).
  11. R. Driver, G. Leskowitz, L. Curtiss, “The characterization of infrared transmitting optical fibers,” Mater. Res. Soc. Symp. Proc. 172, 169–175 (1990).
    [CrossRef]
  12. Y. Matsuura, H. Hiraga, Y. Wang, Y. Kato, M. Miyagi, S. Abe, S. Onodera, “Lensed-taper launching coupler for small-bore, infrared hollow fibers,” Appl. Opt. 36, 7818–7821 (1997).
    [CrossRef]
  13. Y. Matsuura, M. Yaegashi, M. Miyagi, “Hollow-core, lensed-taper launching coupler for Er:YAG laser light,” in Infrared Optical Fibers and Their Applications, M. Saad, J. A. Harrington, eds., Proc. SPIE3849, 149–153 (1999).
    [CrossRef]
  14. I. Ilev, R. Waynant, “Grazing-incidence-based hollow taper for infrared laser-to-fiber coupling,” Appl. Phys. Lett. 74, 2921–2923 (1999).
    [CrossRef]
  15. I. Ilev, R. Waynant, “Uncoated hollow taper as a simple optical funnel for laser delivery,” Rev. Sci. Instrum. 70, 3840–3843 (1999).
    [CrossRef]
  16. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964).

1999 (4)

C. Rabii, J. Harrington, “Mechanical properties of hollow glass waveguides,” Opt. Eng. 38, 1490–1499 (1999).
[CrossRef]

J. Harrington, C. Rabii, D. Gibson, “Transmission properties of hollow glass waveguides for the delivery of CO2 surgical laser power,” IEEE J. Sel. Top. Quantum Electron. 5, 948–953 (1999).
[CrossRef]

I. Ilev, R. Waynant, “Grazing-incidence-based hollow taper for infrared laser-to-fiber coupling,” Appl. Phys. Lett. 74, 2921–2923 (1999).
[CrossRef]

I. Ilev, R. Waynant, “Uncoated hollow taper as a simple optical funnel for laser delivery,” Rev. Sci. Instrum. 70, 3840–3843 (1999).
[CrossRef]

1997 (1)

1996 (1)

K. Matsuura, Y. Matsuura, J. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

1990 (3)

1988 (1)

J. Nisshi, T. Yamashida, T. Yamagishi, “Low-loss chalcogenide glass fiber with core-cladding structure,” Appl. Phys. Lett. 53, 553–554 (1988).
[CrossRef]

Abe, S.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964).

Chamberlain, G.

G. Chamberlain, G. Day, D. Franzen, R. Gallawa, E. Kim, M. Young, Optical Fiber Characterization, (National Bureau of Standards, Washington, D.C., 1983), Vol. 2.

Curtiss, L.

R. Driver, G. Leskowitz, L. Curtiss, “The characterization of infrared transmitting optical fibers,” Mater. Res. Soc. Symp. Proc. 172, 169–175 (1990).
[CrossRef]

Day, G.

G. Chamberlain, G. Day, D. Franzen, R. Gallawa, E. Kim, M. Young, Optical Fiber Characterization, (National Bureau of Standards, Washington, D.C., 1983), Vol. 2.

Driver, R.

R. Driver, G. Leskowitz, L. Curtiss, “The characterization of infrared transmitting optical fibers,” Mater. Res. Soc. Symp. Proc. 172, 169–175 (1990).
[CrossRef]

Dror, J.

Franzen, D.

G. Chamberlain, G. Day, D. Franzen, R. Gallawa, E. Kim, M. Young, Optical Fiber Characterization, (National Bureau of Standards, Washington, D.C., 1983), Vol. 2.

Gallawa, R.

G. Chamberlain, G. Day, D. Franzen, R. Gallawa, E. Kim, M. Young, Optical Fiber Characterization, (National Bureau of Standards, Washington, D.C., 1983), Vol. 2.

Gannot, I.

Gibson, D.

J. Harrington, C. Rabii, D. Gibson, “Transmission properties of hollow glass waveguides for the delivery of CO2 surgical laser power,” IEEE J. Sel. Top. Quantum Electron. 5, 948–953 (1999).
[CrossRef]

Groitoru, N.

Harrington, J.

C. Rabii, J. Harrington, “Mechanical properties of hollow glass waveguides,” Opt. Eng. 38, 1490–1499 (1999).
[CrossRef]

J. Harrington, C. Rabii, D. Gibson, “Transmission properties of hollow glass waveguides for the delivery of CO2 surgical laser power,” IEEE J. Sel. Top. Quantum Electron. 5, 948–953 (1999).
[CrossRef]

K. Matsuura, Y. Matsuura, J. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Hiraga, H.

Ilev, I.

I. Ilev, R. Waynant, “Uncoated hollow taper as a simple optical funnel for laser delivery,” Rev. Sci. Instrum. 70, 3840–3843 (1999).
[CrossRef]

I. Ilev, R. Waynant, “Grazing-incidence-based hollow taper for infrared laser-to-fiber coupling,” Appl. Phys. Lett. 74, 2921–2923 (1999).
[CrossRef]

Karasawa, S.

Kato, Y.

Kim, E.

G. Chamberlain, G. Day, D. Franzen, R. Gallawa, E. Kim, M. Young, Optical Fiber Characterization, (National Bureau of Standards, Washington, D.C., 1983), Vol. 2.

Leskowitz, G.

R. Driver, G. Leskowitz, L. Curtiss, “The characterization of infrared transmitting optical fibers,” Mater. Res. Soc. Symp. Proc. 172, 169–175 (1990).
[CrossRef]

Matsuura, K.

K. Matsuura, Y. Matsuura, J. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Matsuura, Y.

Y. Matsuura, H. Hiraga, Y. Wang, Y. Kato, M. Miyagi, S. Abe, S. Onodera, “Lensed-taper launching coupler for small-bore, infrared hollow fibers,” Appl. Opt. 36, 7818–7821 (1997).
[CrossRef]

K. Matsuura, Y. Matsuura, J. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Y. Matsuura, M. Yaegashi, M. Miyagi, “Hollow-core, lensed-taper launching coupler for Er:YAG laser light,” in Infrared Optical Fibers and Their Applications, M. Saad, J. A. Harrington, eds., Proc. SPIE3849, 149–153 (1999).
[CrossRef]

Miyagi, M.

Nisshi, J.

J. Nisshi, T. Yamashida, T. Yamagishi, “Low-loss chalcogenide glass fiber with core-cladding structure,” Appl. Phys. Lett. 53, 553–554 (1988).
[CrossRef]

Onodera, S.

Rabii, C.

J. Harrington, C. Rabii, D. Gibson, “Transmission properties of hollow glass waveguides for the delivery of CO2 surgical laser power,” IEEE J. Sel. Top. Quantum Electron. 5, 948–953 (1999).
[CrossRef]

C. Rabii, J. Harrington, “Mechanical properties of hollow glass waveguides,” Opt. Eng. 38, 1490–1499 (1999).
[CrossRef]

Wang, Y.

Waynant, R.

I. Ilev, R. Waynant, “Grazing-incidence-based hollow taper for infrared laser-to-fiber coupling,” Appl. Phys. Lett. 74, 2921–2923 (1999).
[CrossRef]

I. Ilev, R. Waynant, “Uncoated hollow taper as a simple optical funnel for laser delivery,” Rev. Sci. Instrum. 70, 3840–3843 (1999).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964).

Yaegashi, M.

Y. Matsuura, M. Yaegashi, M. Miyagi, “Hollow-core, lensed-taper launching coupler for Er:YAG laser light,” in Infrared Optical Fibers and Their Applications, M. Saad, J. A. Harrington, eds., Proc. SPIE3849, 149–153 (1999).
[CrossRef]

Yamagishi, T.

J. Nisshi, T. Yamashida, T. Yamagishi, “Low-loss chalcogenide glass fiber with core-cladding structure,” Appl. Phys. Lett. 53, 553–554 (1988).
[CrossRef]

Yamashida, T.

J. Nisshi, T. Yamashida, T. Yamagishi, “Low-loss chalcogenide glass fiber with core-cladding structure,” Appl. Phys. Lett. 53, 553–554 (1988).
[CrossRef]

Young, M.

G. Chamberlain, G. Day, D. Franzen, R. Gallawa, E. Kim, M. Young, Optical Fiber Characterization, (National Bureau of Standards, Washington, D.C., 1983), Vol. 2.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

I. Ilev, R. Waynant, “Grazing-incidence-based hollow taper for infrared laser-to-fiber coupling,” Appl. Phys. Lett. 74, 2921–2923 (1999).
[CrossRef]

J. Nisshi, T. Yamashida, T. Yamagishi, “Low-loss chalcogenide glass fiber with core-cladding structure,” Appl. Phys. Lett. 53, 553–554 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Harrington, C. Rabii, D. Gibson, “Transmission properties of hollow glass waveguides for the delivery of CO2 surgical laser power,” IEEE J. Sel. Top. Quantum Electron. 5, 948–953 (1999).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

R. Driver, G. Leskowitz, L. Curtiss, “The characterization of infrared transmitting optical fibers,” Mater. Res. Soc. Symp. Proc. 172, 169–175 (1990).
[CrossRef]

Opt. Eng. (2)

C. Rabii, J. Harrington, “Mechanical properties of hollow glass waveguides,” Opt. Eng. 38, 1490–1499 (1999).
[CrossRef]

K. Matsuura, Y. Matsuura, J. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Rev. Sci. Instrum. (1)

I. Ilev, R. Waynant, “Uncoated hollow taper as a simple optical funnel for laser delivery,” Rev. Sci. Instrum. 70, 3840–3843 (1999).
[CrossRef]

Other (6)

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964).

Y. Matsuura, M. Yaegashi, M. Miyagi, “Hollow-core, lensed-taper launching coupler for Er:YAG laser light,” in Infrared Optical Fibers and Their Applications, M. Saad, J. A. Harrington, eds., Proc. SPIE3849, 149–153 (1999).
[CrossRef]

J. Sanghera, I. Aggarwal, eds., Infrared Fiber Optics, (CRC Press, Boca Raton, Fla., 1998).

G. Chamberlain, G. Day, D. Franzen, R. Gallawa, E. Kim, M. Young, Optical Fiber Characterization, (National Bureau of Standards, Washington, D.C., 1983), Vol. 2.

S. Miller, A. Chynoweth, eds., Optical Fiber Telecommunications (Academic, New York, 1989).

F. Allard, ed., Fiber Optics Handbook: For Engineers and Scientists (McGraw-Hill, New York, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement of the hollow-taper-based coupling method for attenuation measurement of IR fibers.

Fig. 2
Fig. 2

Experimental far-field intensity distributions corresponding (a) to the multimode input Er:YAG laser emission and laser beam at the hollow taper output at a distance (b) of 50 mm and (c) of 150 mm from the taper end.

Fig. 3
Fig. 3

Experimental far-field intensity distributions corresponding to the laser emission at the output of a test hollow IR fiber when (a) a taper-to-fiber or (b) a conventional lens-to-fiber coupling is used.

Fig. 4
Fig. 4

Measured attenuation losses versus bending curvature for IR fibers.

Tables (1)

Tables Icon

Table 1 Basic Parameters and Measured Attenuation of the Test IR Fibers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R=n-1/n+12

Metrics