Abstract

We report what we believe to be the first systematic study of Doppler-free, nonlinear absorption by use of cavity ringdown spectroscopy. We have developed a variant of cavity ringdown spectroscopy for the mid-infrared region between 9 and 11 µm, exploiting the intracavity power buildup that is possible with continuous-wave lasers. The infrared source consists of a continuous-wave CO2 laser with 1-mW tunable infrared sidebands that couple into a high-finesse stable resonator. We tune the sideband frequencies to observe a saturated, Doppler-free Lamb dip in the ν 7, 111,10 ← 112,10 rovibrational transition of ethylene (C2H4). Power studies of the Lamb dip are presented to examine the intracavity effects of saturation on the Lamb-dip linewidth, the peak depth, and the broadband absorption.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
    [CrossRef]
  2. J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
    [CrossRef]
  3. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
    [CrossRef]
  4. J. P. Looney, J. T. Hodges, R. D. van Zee, “Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers,” in Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, K. A. Busch, M. A. Busch, eds. (Oxford University Press, Oxford, UK, 1998), Chap. 7.
  5. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  6. K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ring-down spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
    [CrossRef]
  7. Y. He, M. Hippler, M. Quack, “High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser,” Chem. Phys. Lett. 289, 527–534 (1998).
    [CrossRef]
  8. R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
    [CrossRef]
  9. D. Romanini, J. Gambogi, K. K. Lehmann, “Cavity ring down spectroscopy with cw diode laser excitation,” in Proceedings of the 50th International Symposium on Molecular Spectroscopy, T. A. Miller, ed. (Department of Chemistry, Ohio State University, Columbus, Ohio, 1995), p. 284.
  10. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
    [CrossRef]
  11. R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
    [CrossRef]
  12. D. Romanini, A. A. Kachanov, F. Stoeckel, “Cavity ringdown spectroscopy: broad band absolute absorption measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
    [CrossRef]
  13. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
    [CrossRef]
  14. D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
    [CrossRef]
  15. D. Romanini, P. Dupre, R. Jost, “Non-linear effects by cw cavity ring-down spectroscopy in jet-cooled NO2,” Vib. Spectrosc. 19, 93–106 (1999).
    [CrossRef]
  16. J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared Cavity Ringdown Laser-Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
    [CrossRef]
  17. R. Engeln, E. van den Berg, G. Meijer, L. Lin, G. M. H. Knippels, A. F. G. van der Meer, “Cavity ring down spectroscopy with a free-electron laser,” Chem. Phys. Lett. 269, 293–297 (1997).
    [CrossRef]
  18. E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
    [CrossRef]
  19. M. Muertz, B. Frech, W. Urban, “High-resolution cavity leak-out absorption spectroscopy in the 10 mm region,” Appl. Phys. B 69, 243–249 (1999).
  20. G. Magerl, W. Schupita, E. Bonek, “A tunable CO2 laser sideband spectrometer,” IEEE J. Quantum Electron. QE-18, 1214–1219 (1982).
    [CrossRef]
  21. SPST p-i-n Diode Switch, Series SW-2184-1A, American Microwave Corporation, 7311G Grove Rd., Frederick, Md. 21701.
  22. II-VI, Inc., 375 Saxonburg Blvd., Saxonburg, Pa. 16056.
  23. K. M. Evenson, C. C. Chou, B. W. Bach, K. G. Bach, “New cw CO2 laser lines: the 9-µm hot band,” IEEE J. Quantum Electron. 30, 1187–1188 (1994).
    [CrossRef]
  24. E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
    [CrossRef]
  25. R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ring-down spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
    [CrossRef]
  26. D. C. Reuter, J. M. Sirota, “Absolute intensities and foreign gas broadening coefficients of the 111,10 ← 112,10 and 180,18 ← 181,18 lines in the ν7 band of C2H4,” J. Quant. Spectrosc. Radiat. Transfer 50, 477–482 (1993).
    [CrossRef]
  27. E. Giacobino, M. Devaud, F. Biraben, G. Grynberg, “Doppler-free two-photon dispersion and optical bistability in rubidium vapor,” Phys. Rev. Lett. 45, 434–437 (1980).
    [CrossRef]
  28. F. T. Arecchi, A. Politi, “Optical bistability in a resonant two-photon absorber,” Lett. Nuovo Cimento 23, 65–69 (1978).
    [CrossRef]
  29. A. T. Rosenberger, L. A. Orozco, H. J. Kimble, P. D. Drummond, “Absorptive optical bistability in two-state atoms,” Phys. Rev. A 43, 6284–6302 (1991).
    [CrossRef] [PubMed]
  30. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 24.
  31. V. S. Letokhov, V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag, New York, 1977), p. 57.
  32. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, New York, 1996), p. 443.
  33. C. J. Borde, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by perturbation approach,” Phys. Rev. A 14, 236–244 (1976).
    [CrossRef]
  34. V. S. Letokhov, High-Resolution Laser Spectroscopy, K. Shimoda, ed. (Springer-Verlag, New York, 1976), p. 99.
  35. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, S.-N.G. Chu, A. Y. Cho, “High power mid-infrared quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680–3682 (1996).
    [CrossRef]
  36. R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71, 3400–3402 (1997).
    [CrossRef]
  37. R. Nubling, Laser Power Optics, Inc., San Diego, Calif. (personal communication, 1999).
  38. M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
    [CrossRef]

1999 (4)

D. Romanini, P. Dupre, R. Jost, “Non-linear effects by cw cavity ring-down spectroscopy in jet-cooled NO2,” Vib. Spectrosc. 19, 93–106 (1999).
[CrossRef]

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

M. Muertz, B. Frech, W. Urban, “High-resolution cavity leak-out absorption spectroscopy in the 10 mm region,” Appl. Phys. B 69, 243–249 (1999).

R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ring-down spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
[CrossRef]

1998 (5)

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ring-down spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
[CrossRef]

Y. He, M. Hippler, M. Quack, “High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser,” Chem. Phys. Lett. 289, 527–534 (1998).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

1997 (5)

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Cavity ringdown spectroscopy: broad band absolute absorption measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

R. Engeln, E. van den Berg, G. Meijer, L. Lin, G. M. H. Knippels, A. F. G. van der Meer, “Cavity ring down spectroscopy with a free-electron laser,” Chem. Phys. Lett. 269, 293–297 (1997).
[CrossRef]

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71, 3400–3402 (1997).
[CrossRef]

1996 (4)

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, S.-N.G. Chu, A. Y. Cho, “High power mid-infrared quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680–3682 (1996).
[CrossRef]

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

1995 (2)

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared Cavity Ringdown Laser-Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

1994 (2)

K. M. Evenson, C. C. Chou, B. W. Bach, K. G. Bach, “New cw CO2 laser lines: the 9-µm hot band,” IEEE J. Quantum Electron. 30, 1187–1188 (1994).
[CrossRef]

E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[CrossRef]

1993 (1)

D. C. Reuter, J. M. Sirota, “Absolute intensities and foreign gas broadening coefficients of the 111,10 ← 112,10 and 180,18 ← 181,18 lines in the ν7 band of C2H4,” J. Quant. Spectrosc. Radiat. Transfer 50, 477–482 (1993).
[CrossRef]

1991 (1)

A. T. Rosenberger, L. A. Orozco, H. J. Kimble, P. D. Drummond, “Absorptive optical bistability in two-state atoms,” Phys. Rev. A 43, 6284–6302 (1991).
[CrossRef] [PubMed]

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1982 (1)

G. Magerl, W. Schupita, E. Bonek, “A tunable CO2 laser sideband spectrometer,” IEEE J. Quantum Electron. QE-18, 1214–1219 (1982).
[CrossRef]

1980 (1)

E. Giacobino, M. Devaud, F. Biraben, G. Grynberg, “Doppler-free two-photon dispersion and optical bistability in rubidium vapor,” Phys. Rev. Lett. 45, 434–437 (1980).
[CrossRef]

1978 (1)

F. T. Arecchi, A. Politi, “Optical bistability in a resonant two-photon absorber,” Lett. Nuovo Cimento 23, 65–69 (1978).
[CrossRef]

1976 (1)

C. J. Borde, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by perturbation approach,” Phys. Rev. A 14, 236–244 (1976).
[CrossRef]

Arecchi, F. T.

F. T. Arecchi, A. Politi, “Optical bistability in a resonant two-photon absorber,” Lett. Nuovo Cimento 23, 65–69 (1978).
[CrossRef]

Ashworth, S. H.

E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[CrossRef]

Bach, B. W.

K. M. Evenson, C. C. Chou, B. W. Bach, K. G. Bach, “New cw CO2 laser lines: the 9-µm hot band,” IEEE J. Quantum Electron. 30, 1187–1188 (1994).
[CrossRef]

Bach, K. G.

K. M. Evenson, C. C. Chou, B. W. Bach, K. G. Bach, “New cw CO2 laser lines: the 9-µm hot band,” IEEE J. Quantum Electron. 30, 1187–1188 (1994).
[CrossRef]

Baillargeon, J. N.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, S.-N.G. Chu, A. Y. Cho, “High power mid-infrared quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680–3682 (1996).
[CrossRef]

Berden, G.

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

Biraben, F.

E. Giacobino, M. Devaud, F. Biraben, G. Grynberg, “Doppler-free two-photon dispersion and optical bistability in rubidium vapor,” Phys. Rev. Lett. 45, 434–437 (1980).
[CrossRef]

Bonek, E.

G. Magerl, W. Schupita, E. Bonek, “A tunable CO2 laser sideband spectrometer,” IEEE J. Quantum Electron. QE-18, 1214–1219 (1982).
[CrossRef]

Borde, C. J.

C. J. Borde, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by perturbation approach,” Phys. Rev. A 14, 236–244 (1976).
[CrossRef]

Capasso, F.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, S.-N.G. Chu, A. Y. Cho, “High power mid-infrared quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680–3682 (1996).
[CrossRef]

Chebotayev, V. P.

V. S. Letokhov, V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag, New York, 1977), p. 57.

Cho, A. Y.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, S.-N.G. Chu, A. Y. Cho, “High power mid-infrared quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680–3682 (1996).
[CrossRef]

Chou, C. C.

K. M. Evenson, C. C. Chou, B. W. Bach, K. G. Bach, “New cw CO2 laser lines: the 9-µm hot band,” IEEE J. Quantum Electron. 30, 1187–1188 (1994).
[CrossRef]

Chu, S.-N.G.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, S.-N.G. Chu, A. Y. Cho, “High power mid-infrared quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680–3682 (1996).
[CrossRef]

Collier, C. P.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared Cavity Ringdown Laser-Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

Crosson, E. R.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Demtroder, W.

W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, New York, 1996), p. 443.

Devaud, M.

E. Giacobino, M. Devaud, F. Biraben, G. Grynberg, “Doppler-free two-photon dispersion and optical bistability in rubidium vapor,” Phys. Rev. Lett. 45, 434–437 (1980).
[CrossRef]

Drummond, P. D.

A. T. Rosenberger, L. A. Orozco, H. J. Kimble, P. D. Drummond, “Absorptive optical bistability in two-state atoms,” Phys. Rev. A 43, 6284–6302 (1991).
[CrossRef] [PubMed]

Dupre, P.

D. Romanini, P. Dupre, R. Jost, “Non-linear effects by cw cavity ring-down spectroscopy in jet-cooled NO2,” Vib. Spectrosc. 19, 93–106 (1999).
[CrossRef]

Engeln, R.

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

R. Engeln, E. van den Berg, G. Meijer, L. Lin, G. M. H. Knippels, A. F. G. van der Meer, “Cavity ring down spectroscopy with a free-electron laser,” Chem. Phys. Lett. 269, 293–297 (1997).
[CrossRef]

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

Evenson, K. M.

K. M. Evenson, C. C. Chou, B. W. Bach, K. G. Bach, “New cw CO2 laser lines: the 9-µm hot band,” IEEE J. Quantum Electron. 30, 1187–1188 (1994).
[CrossRef]

Faist, J.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, S.-N.G. Chu, A. Y. Cho, “High power mid-infrared quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680–3682 (1996).
[CrossRef]

Farrell, J. T.

E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[CrossRef]

Frech, B.

M. Muertz, B. Frech, W. Urban, “High-resolution cavity leak-out absorption spectroscopy in the 10 mm region,” Appl. Phys. B 69, 243–249 (1999).

Gambogi, J.

D. Romanini, J. Gambogi, K. K. Lehmann, “Cavity ring down spectroscopy with cw diode laser excitation,” in Proceedings of the 50th International Symposium on Molecular Spectroscopy, T. A. Miller, ed. (Department of Chemistry, Ohio State University, Columbus, Ohio, 1995), p. 284.

Giacobino, E.

E. Giacobino, M. Devaud, F. Biraben, G. Grynberg, “Doppler-free two-photon dispersion and optical bistability in rubidium vapor,” Phys. Rev. Lett. 45, 434–437 (1980).
[CrossRef]

Grynberg, G.

E. Giacobino, M. Devaud, F. Biraben, G. Grynberg, “Doppler-free two-photon dispersion and optical bistability in rubidium vapor,” Phys. Rev. Lett. 45, 434–437 (1980).
[CrossRef]

Haar, P.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

Hall, J. L.

C. J. Borde, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by perturbation approach,” Phys. Rev. A 14, 236–244 (1976).
[CrossRef]

Harb, C. C.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Harris, J. S.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

He, Y.

Y. He, M. Hippler, M. Quack, “High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser,” Chem. Phys. Lett. 289, 527–534 (1998).
[CrossRef]

Hippler, M.

Y. He, M. Hippler, M. Quack, “High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser,” Chem. Phys. Lett. 289, 527–534 (1998).
[CrossRef]

Hodges, J. T.

R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ring-down spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

J. P. Looney, J. T. Hodges, R. D. van Zee, “Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers,” in Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, K. A. Busch, M. A. Busch, eds. (Oxford University Press, Oxford, UK, 1998), Chap. 7.

Hummer, D. G.

C. J. Borde, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by perturbation approach,” Phys. Rev. A 14, 236–244 (1976).
[CrossRef]

Jost, R.

D. Romanini, P. Dupre, R. Jost, “Non-linear effects by cw cavity ring-down spectroscopy in jet-cooled NO2,” Vib. Spectrosc. 19, 93–106 (1999).
[CrossRef]

Kachanov, A. A.

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Cavity ringdown spectroscopy: broad band absolute absorption measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Kimble, H. J.

A. T. Rosenberger, L. A. Orozco, H. J. Kimble, P. D. Drummond, “Absorptive optical bistability in two-state atoms,” Phys. Rev. A 43, 6284–6302 (1991).
[CrossRef] [PubMed]

Knippels, G. M. H.

R. Engeln, E. van den Berg, G. Meijer, L. Lin, G. M. H. Knippels, A. F. G. van der Meer, “Cavity ring down spectroscopy with a free-electron laser,” Chem. Phys. Lett. 269, 293–297 (1997).
[CrossRef]

Kunasz, C. V.

C. J. Borde, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by perturbation approach,” Phys. Rev. A 14, 236–244 (1976).
[CrossRef]

Lehmann, K. K.

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

D. Romanini, J. Gambogi, K. K. Lehmann, “Cavity ring down spectroscopy with cw diode laser excitation,” in Proceedings of the 50th International Symposium on Molecular Spectroscopy, T. A. Miller, ed. (Department of Chemistry, Ohio State University, Columbus, Ohio, 1995), p. 284.

Letokhov, V. S.

V. S. Letokhov, High-Resolution Laser Spectroscopy, K. Shimoda, ed. (Springer-Verlag, New York, 1976), p. 99.

V. S. Letokhov, V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag, New York, 1977), p. 57.

Levenson, M. D.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

Lin, C.-H.

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71, 3400–3402 (1997).
[CrossRef]

Lin, L.

R. Engeln, E. van den Berg, G. Meijer, L. Lin, G. M. H. Knippels, A. F. G. van der Meer, “Cavity ring down spectroscopy with a free-electron laser,” Chem. Phys. Lett. 269, 293–297 (1997).
[CrossRef]

Looney, J. P.

R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ring-down spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

J. P. Looney, J. T. Hodges, R. D. van Zee, “Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers,” in Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, K. A. Busch, M. A. Busch, eds. (Oxford University Press, Oxford, UK, 1998), Chap. 7.

Magerl, G.

G. Magerl, W. Schupita, E. Bonek, “A tunable CO2 laser sideband spectrometer,” IEEE J. Quantum Electron. QE-18, 1214–1219 (1982).
[CrossRef]

Marcus, G. A.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

Meijer, G.

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

R. Engeln, E. van den Berg, G. Meijer, L. Lin, G. M. H. Knippels, A. F. G. van der Meer, “Cavity ring down spectroscopy with a free-electron laser,” Chem. Phys. Lett. 269, 293–297 (1997).
[CrossRef]

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

Muertz, M.

M. Muertz, B. Frech, W. Urban, “High-resolution cavity leak-out absorption spectroscopy in the 10 mm region,” Appl. Phys. B 69, 243–249 (1999).

Murry, S. J.

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71, 3400–3402 (1997).
[CrossRef]

Nesbitt, D. J.

E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[CrossRef]

Nubling, R.

R. Nubling, Laser Power Optics, Inc., San Diego, Calif. (personal communication, 1999).

O’Keefe, A.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared Cavity Ringdown Laser-Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Orozco, L. A.

A. T. Rosenberger, L. A. Orozco, H. J. Kimble, P. D. Drummond, “Absorptive optical bistability in two-state atoms,” Phys. Rev. A 43, 6284–6302 (1991).
[CrossRef] [PubMed]

Paldus, B. A.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

Paul, J. B.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared Cavity Ringdown Laser-Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

Peeters, R.

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Pei, S. S.

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71, 3400–3402 (1997).
[CrossRef]

Politi, A.

F. T. Arecchi, A. Politi, “Optical bistability in a resonant two-photon absorber,” Lett. Nuovo Cimento 23, 65–69 (1978).
[CrossRef]

Quack, M.

Y. He, M. Hippler, M. Quack, “High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser,” Chem. Phys. Lett. 289, 527–534 (1998).
[CrossRef]

Rakestraw, D. J.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared Cavity Ringdown Laser-Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

Reuter, D. C.

D. C. Reuter, J. M. Sirota, “Absolute intensities and foreign gas broadening coefficients of the 111,10 ← 112,10 and 180,18 ← 181,18 lines in the ν7 band of C2H4,” J. Quant. Spectrosc. Radiat. Transfer 50, 477–482 (1993).
[CrossRef]

Riedle, E.

E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[CrossRef]

Romanini, D.

D. Romanini, P. Dupre, R. Jost, “Non-linear effects by cw cavity ring-down spectroscopy in jet-cooled NO2,” Vib. Spectrosc. 19, 93–106 (1999).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Cavity ringdown spectroscopy: broad band absolute absorption measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

D. Romanini, J. Gambogi, K. K. Lehmann, “Cavity ring down spectroscopy with cw diode laser excitation,” in Proceedings of the 50th International Symposium on Molecular Spectroscopy, T. A. Miller, ed. (Department of Chemistry, Ohio State University, Columbus, Ohio, 1995), p. 284.

Rosenberger, A. T.

A. T. Rosenberger, L. A. Orozco, H. J. Kimble, P. D. Drummond, “Absorptive optical bistability in two-state atoms,” Phys. Rev. A 43, 6284–6302 (1991).
[CrossRef] [PubMed]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Saykally, R. J.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared Cavity Ringdown Laser-Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

Scherer, J. J.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared Cavity Ringdown Laser-Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

Schulz, K. J.

K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ring-down spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
[CrossRef]

Schupita, W.

G. Magerl, W. Schupita, E. Bonek, “A tunable CO2 laser sideband spectrometer,” IEEE J. Quantum Electron. QE-18, 1214–1219 (1982).
[CrossRef]

Schwettman, H. A.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 24.

Simpson, W. R.

K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ring-down spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
[CrossRef]

Sirota, J. M.

D. C. Reuter, J. M. Sirota, “Absolute intensities and foreign gas broadening coefficients of the 111,10 ← 112,10 and 180,18 ← 181,18 lines in the ν7 band of C2H4,” J. Quant. Spectrosc. Radiat. Transfer 50, 477–482 (1993).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, S.-N.G. Chu, A. Y. Cho, “High power mid-infrared quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680–3682 (1996).
[CrossRef]

Sivco, D. L.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, S.-N.G. Chu, A. Y. Cho, “High power mid-infrared quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680–3682 (1996).
[CrossRef]

Spence, T. G.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

Stoeckel, F.

D. Romanini, A. A. Kachanov, F. Stoeckel, “Cavity ringdown spectroscopy: broad band absolute absorption measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

Urban, W.

M. Muertz, B. Frech, W. Urban, “High-resolution cavity leak-out absorption spectroscopy in the 10 mm region,” Appl. Phys. B 69, 243–249 (1999).

van den Berg, E.

R. Engeln, E. van den Berg, G. Meijer, L. Lin, G. M. H. Knippels, A. F. G. van der Meer, “Cavity ring down spectroscopy with a free-electron laser,” Chem. Phys. Lett. 269, 293–297 (1997).
[CrossRef]

van der Meer, A. F. G.

R. Engeln, E. van den Berg, G. Meijer, L. Lin, G. M. H. Knippels, A. F. G. van der Meer, “Cavity ring down spectroscopy with a free-electron laser,” Chem. Phys. Lett. 269, 293–297 (1997).
[CrossRef]

van Zee, R. D.

R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ring-down spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

J. P. Looney, J. T. Hodges, R. D. van Zee, “Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers,” in Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, K. A. Busch, M. A. Busch, eds. (Oxford University Press, Oxford, UK, 1998), Chap. 7.

Voelkel, D.

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared Cavity Ringdown Laser-Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

von Helden, G.

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

Wilke, B.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Wu, H.

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71, 3400–3402 (1997).
[CrossRef]

Xie, J.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Yang, B. H.

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71, 3400–3402 (1997).
[CrossRef]

Yang, R. Q.

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71, 3400–3402 (1997).
[CrossRef]

Zalicki, P.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zare, R. N.

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zhang, D.

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71, 3400–3402 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Muertz, B. Frech, W. Urban, “High-resolution cavity leak-out absorption spectroscopy in the 10 mm region,” Appl. Phys. B 69, 243–249 (1999).

Appl. Phys. Lett. (2)

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, S.-N.G. Chu, A. Y. Cho, “High power mid-infrared quantum cascade lasers operating above room temperature,” Appl. Phys. Lett. 68, 3680–3682 (1996).
[CrossRef]

R. Q. Yang, B. H. Yang, D. Zhang, C.-H. Lin, S. J. Murry, H. Wu, S. S. Pei, “High power mid-infrared interband cascade lasers based on type-II quantum wells,” Appl. Phys. Lett. 71, 3400–3402 (1997).
[CrossRef]

Chem. Phys. Lett. (9)

K. J. Schulz, W. R. Simpson, “Frequency-matched cavity ring-down spectroscopy,” Chem. Phys. Lett. 297, 523–529 (1998).
[CrossRef]

Y. He, M. Hippler, M. Quack, “High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser,” Chem. Phys. Lett. 289, 527–534 (1998).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Cavity ringdown spectroscopy: broad band absolute absorption measurements,” Chem. Phys. Lett. 270, 546–550 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997).
[CrossRef]

J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J. Saykally, A. O’Keefe, “Infrared Cavity Ringdown Laser-Absorption Spectroscopy (IR-CRLAS),” Chem. Phys. Lett. 245, 273–280 (1995).
[CrossRef]

R. Engeln, E. van den Berg, G. Meijer, L. Lin, G. M. H. Knippels, A. F. G. van der Meer, “Cavity ring down spectroscopy with a free-electron laser,” Chem. Phys. Lett. 269, 293–297 (1997).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. Magerl, W. Schupita, E. Bonek, “A tunable CO2 laser sideband spectrometer,” IEEE J. Quantum Electron. QE-18, 1214–1219 (1982).
[CrossRef]

K. M. Evenson, C. C. Chou, B. W. Bach, K. G. Bach, “New cw CO2 laser lines: the 9-µm hot band,” IEEE J. Quantum Electron. 30, 1187–1188 (1994).
[CrossRef]

J. Appl. Phys. (1)

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

J. Chem. Phys. (3)

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

D. C. Reuter, J. M. Sirota, “Absolute intensities and foreign gas broadening coefficients of the 111,10 ← 112,10 and 180,18 ← 181,18 lines in the ν7 band of C2H4,” J. Quant. Spectrosc. Radiat. Transfer 50, 477–482 (1993).
[CrossRef]

Lett. Nuovo Cimento (1)

F. T. Arecchi, A. Politi, “Optical bistability in a resonant two-photon absorber,” Lett. Nuovo Cimento 23, 65–69 (1978).
[CrossRef]

Phys. Rev. A (2)

A. T. Rosenberger, L. A. Orozco, H. J. Kimble, P. D. Drummond, “Absorptive optical bistability in two-state atoms,” Phys. Rev. A 43, 6284–6302 (1991).
[CrossRef] [PubMed]

C. J. Borde, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated absorption line shape: calculation of the transit-time broadening by perturbation approach,” Phys. Rev. A 14, 236–244 (1976).
[CrossRef]

Phys. Rev. Lett. (1)

E. Giacobino, M. Devaud, F. Biraben, G. Grynberg, “Doppler-free two-photon dispersion and optical bistability in rubidium vapor,” Phys. Rev. Lett. 45, 434–437 (1980).
[CrossRef]

Rev. Sci. Instrum. (4)

E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Vib. Spectrosc. (1)

D. Romanini, P. Dupre, R. Jost, “Non-linear effects by cw cavity ring-down spectroscopy in jet-cooled NO2,” Vib. Spectrosc. 19, 93–106 (1999).
[CrossRef]

Other (9)

D. Romanini, J. Gambogi, K. K. Lehmann, “Cavity ring down spectroscopy with cw diode laser excitation,” in Proceedings of the 50th International Symposium on Molecular Spectroscopy, T. A. Miller, ed. (Department of Chemistry, Ohio State University, Columbus, Ohio, 1995), p. 284.

J. P. Looney, J. T. Hodges, R. D. van Zee, “Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers,” in Cavity-Ringdown Spectroscopy: an Ultratrace-Absorption Measurement Technique, K. A. Busch, M. A. Busch, eds. (Oxford University Press, Oxford, UK, 1998), Chap. 7.

SPST p-i-n Diode Switch, Series SW-2184-1A, American Microwave Corporation, 7311G Grove Rd., Frederick, Md. 21701.

II-VI, Inc., 375 Saxonburg Blvd., Saxonburg, Pa. 16056.

V. S. Letokhov, High-Resolution Laser Spectroscopy, K. Shimoda, ed. (Springer-Verlag, New York, 1976), p. 99.

R. Nubling, Laser Power Optics, Inc., San Diego, Calif. (personal communication, 1999).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 24.

V. S. Letokhov, V. P. Chebotayev, Nonlinear Laser Spectroscopy (Springer-Verlag, New York, 1977), p. 57.

W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, New York, 1996), p. 443.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical experimental setup. TWT, traveling-wave tube.

Fig. 2
Fig. 2

Empty-cavity transmission spectrum.

Fig. 3
Fig. 3

Ringdown decays for an unevacuated (open to the atmosphere) cavity and an evacuated cavity. The triangles represent the data for an unevacuated cavity whereas the squares represent the data for an evacuated cavity. The solid curve through the data points is a first-order exponential fit.

Tables (1)

Tables Icon

Table 1 Summary of the Parameters from Nonlinear Least-Squares Fits of Eqs. (8) to the Lamb-Dip Data Shown in the Bottom Panel of Fig. 4a

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

kω=21-R/tr+cαω,
NEA=2frepστ/τcτ,
μ12M=μ0M/JJ+11/2.
S=μ12E/2T1T2,
I=E2c/2,
IS=2c/2μ122T1T2.
ΔνS=ΔvH1+S1/2,
αMν=αEC+α0νΔνH/2B1-2ν-ν0A+B21/2,
A=ν-ν02+ΔνH/221/2, B=ν-ν02+ΔνH/221+2S1/2
α0ν=α0 exp-2 ln 4 ν-ν02ΔνD2,
αSv=α0v/1+S1/2.
D=α01/1+S1/2-1/1+2S1/2.
dI/dt=-cαEC+α0/1+I/ISI,

Metrics