Abstract

A new method of displacement measurement that uses the transient photoelectromotive force effects that arise in semiconductors illuminated by two frequency-modulated lasers is proposed and demonstrated experimentally. A height resolution of 0.85 µm was achieved experimentally; theoretical analysis charts the path toward eventual improvement of this resolution.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
    [CrossRef]
  2. N. A. Korneev, S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
    [CrossRef]
  3. R. H. Marshall, I. A. Sokolov, Y. N. Ning, A. W. Palmer, K. T. V. Grattan, “Photo-electromotive force crystals for interferometric measurement of vibrational response,” Meas. Sci. Technol. 7, 1683–1686 (1996).
    [CrossRef]
  4. C. C. Wang, F. Davidson, S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
    [CrossRef] [PubMed]
  5. N. Korneev, P. Rodriguez, S. Stepanov, “Broadband detection of phase modulation in 10 MHz frequency range using a GaAs adaptive photodetector,” Electron. Lett. 31, 483–485 (1995).
    [CrossRef]
  6. C. C. Wang, F. Davidson, “Optical spectral analysis using moving space-charge field effects in photoconductive semiconductors,” J. Opt. Soc. Am. B 13, 1376–1383 (1996).
    [CrossRef]
  7. F. Jin, J. B. Khurgin, S. Trivedi, C. C. Wang, E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
    [CrossRef]
  8. N. Korneev, P. Rodriguez, B. Sanchez, S. Stepanov, “Non-steady-state photoelectromotive-force based GaAs adaptive photodetectors at 632.8 nm,” Optik 102, 21–23 (1996).
  9. H. Kikuta, K. Iwata, R. Nagata, “Distance measurement by the wavelength shift of laser diode light,” Appl. Opt. 25, 2976–2980 (1986).
    [CrossRef] [PubMed]
  10. E. Fischer, E. Dalhoff, S. Heim, U. Hofbauer, H. J. Tiziani, “Absolute interferometric distance measurement using a FM-demodulation technique,” Appl. Opt. 34, 5589–5594 (1995).
    [CrossRef] [PubMed]
  11. A. Dandridge, R. O. Miles, T. G. Giallorenzi, “Diode laser sensor,” Electron. Lett. 16, 948–949 (1980).
    [CrossRef]
  12. P. J. de Groot, G. M. Gallatin, S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
    [CrossRef] [PubMed]
  13. C. C. Wang, “Moving space charge field effects in photoconductive semiconductors and their applications,” Ph.D. dissertation (Johns Hopkins University, Baltimore, Md., 1995).
  14. S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
    [CrossRef] [PubMed]
  15. P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, T. R. O’Meara, D. M. Pepper, “Compensated high bandwidth laser ultrasonic detector based on photo-induced EMF in GaAs,” Rev. Prog. Quantitative Nondestr. Eval. 15, 2149–2155 (1996).
    [CrossRef]
  16. I. A. Sokolov, V. V. Kulikov, C. Kalpouzos, N. A. Vainos, “Laser vibrometer using GaAs adaptive photodetectors based on the effect of the non-steady-state photoelectromotive force,” in Third International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, E. P. Tomasini, ed., Proc. SPIE3411, 68–75 (1998).
    [CrossRef]

1999 (1)

F. Jin, J. B. Khurgin, S. Trivedi, C. C. Wang, E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
[CrossRef]

1996 (4)

N. Korneev, P. Rodriguez, B. Sanchez, S. Stepanov, “Non-steady-state photoelectromotive-force based GaAs adaptive photodetectors at 632.8 nm,” Optik 102, 21–23 (1996).

R. H. Marshall, I. A. Sokolov, Y. N. Ning, A. W. Palmer, K. T. V. Grattan, “Photo-electromotive force crystals for interferometric measurement of vibrational response,” Meas. Sci. Technol. 7, 1683–1686 (1996).
[CrossRef]

C. C. Wang, F. Davidson, “Optical spectral analysis using moving space-charge field effects in photoconductive semiconductors,” J. Opt. Soc. Am. B 13, 1376–1383 (1996).
[CrossRef]

P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, T. R. O’Meara, D. M. Pepper, “Compensated high bandwidth laser ultrasonic detector based on photo-induced EMF in GaAs,” Rev. Prog. Quantitative Nondestr. Eval. 15, 2149–2155 (1996).
[CrossRef]

1995 (3)

1991 (1)

N. A. Korneev, S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
[CrossRef]

1990 (2)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

1988 (1)

1986 (1)

1980 (1)

A. Dandridge, R. O. Miles, T. G. Giallorenzi, “Diode laser sensor,” Electron. Lett. 16, 948–949 (1980).
[CrossRef]

Apostol, I.

Dalhoff, E.

Dandridge, A.

A. Dandridge, R. O. Miles, T. G. Giallorenzi, “Diode laser sensor,” Electron. Lett. 16, 948–949 (1980).
[CrossRef]

Davidson, F.

de Groot, P. J.

Dunning, G. J.

P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, T. R. O’Meara, D. M. Pepper, “Compensated high bandwidth laser ultrasonic detector based on photo-induced EMF in GaAs,” Rev. Prog. Quantitative Nondestr. Eval. 15, 2149–2155 (1996).
[CrossRef]

Fischer, E.

Gad, E.

F. Jin, J. B. Khurgin, S. Trivedi, C. C. Wang, E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
[CrossRef]

Gallatin, G. M.

Giallorenzi, T. G.

A. Dandridge, R. O. Miles, T. G. Giallorenzi, “Diode laser sensor,” Electron. Lett. 16, 948–949 (1980).
[CrossRef]

Grattan, K. T. V.

R. H. Marshall, I. A. Sokolov, Y. N. Ning, A. W. Palmer, K. T. V. Grattan, “Photo-electromotive force crystals for interferometric measurement of vibrational response,” Meas. Sci. Technol. 7, 1683–1686 (1996).
[CrossRef]

Heim, S.

Hofbauer, U.

Iwata, K.

Jin, F.

F. Jin, J. B. Khurgin, S. Trivedi, C. C. Wang, E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
[CrossRef]

Kalpouzos, C.

I. A. Sokolov, V. V. Kulikov, C. Kalpouzos, N. A. Vainos, “Laser vibrometer using GaAs adaptive photodetectors based on the effect of the non-steady-state photoelectromotive force,” in Third International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, E. P. Tomasini, ed., Proc. SPIE3411, 68–75 (1998).
[CrossRef]

Khurgin, J. B.

F. Jin, J. B. Khurgin, S. Trivedi, C. C. Wang, E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
[CrossRef]

Kikuta, H.

Klein, M. B.

P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, T. R. O’Meara, D. M. Pepper, “Compensated high bandwidth laser ultrasonic detector based on photo-induced EMF in GaAs,” Rev. Prog. Quantitative Nondestr. Eval. 15, 2149–2155 (1996).
[CrossRef]

Korneev, N.

N. Korneev, P. Rodriguez, B. Sanchez, S. Stepanov, “Non-steady-state photoelectromotive-force based GaAs adaptive photodetectors at 632.8 nm,” Optik 102, 21–23 (1996).

N. Korneev, P. Rodriguez, S. Stepanov, “Broadband detection of phase modulation in 10 MHz frequency range using a GaAs adaptive photodetector,” Electron. Lett. 31, 483–485 (1995).
[CrossRef]

Korneev, N. A.

N. A. Korneev, S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
[CrossRef]

Kulikov, V. V.

I. A. Sokolov, V. V. Kulikov, C. Kalpouzos, N. A. Vainos, “Laser vibrometer using GaAs adaptive photodetectors based on the effect of the non-steady-state photoelectromotive force,” in Third International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, E. P. Tomasini, ed., Proc. SPIE3411, 68–75 (1998).
[CrossRef]

Macomber, S. H.

Marshall, R. H.

R. H. Marshall, I. A. Sokolov, Y. N. Ning, A. W. Palmer, K. T. V. Grattan, “Photo-electromotive force crystals for interferometric measurement of vibrational response,” Meas. Sci. Technol. 7, 1683–1686 (1996).
[CrossRef]

McCahon, S. W.

P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, T. R. O’Meara, D. M. Pepper, “Compensated high bandwidth laser ultrasonic detector based on photo-induced EMF in GaAs,” Rev. Prog. Quantitative Nondestr. Eval. 15, 2149–2155 (1996).
[CrossRef]

Miles, R. O.

A. Dandridge, R. O. Miles, T. G. Giallorenzi, “Diode laser sensor,” Electron. Lett. 16, 948–949 (1980).
[CrossRef]

Mitchell, P. V.

P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, T. R. O’Meara, D. M. Pepper, “Compensated high bandwidth laser ultrasonic detector based on photo-induced EMF in GaAs,” Rev. Prog. Quantitative Nondestr. Eval. 15, 2149–2155 (1996).
[CrossRef]

Nagata, R.

Ning, Y. N.

R. H. Marshall, I. A. Sokolov, Y. N. Ning, A. W. Palmer, K. T. V. Grattan, “Photo-electromotive force crystals for interferometric measurement of vibrational response,” Meas. Sci. Technol. 7, 1683–1686 (1996).
[CrossRef]

O’Meara, T. R.

P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, T. R. O’Meara, D. M. Pepper, “Compensated high bandwidth laser ultrasonic detector based on photo-induced EMF in GaAs,” Rev. Prog. Quantitative Nondestr. Eval. 15, 2149–2155 (1996).
[CrossRef]

Palmer, A. W.

R. H. Marshall, I. A. Sokolov, Y. N. Ning, A. W. Palmer, K. T. V. Grattan, “Photo-electromotive force crystals for interferometric measurement of vibrational response,” Meas. Sci. Technol. 7, 1683–1686 (1996).
[CrossRef]

Pepper, D. M.

P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, T. R. O’Meara, D. M. Pepper, “Compensated high bandwidth laser ultrasonic detector based on photo-induced EMF in GaAs,” Rev. Prog. Quantitative Nondestr. Eval. 15, 2149–2155 (1996).
[CrossRef]

Petrov, M. P.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

Popa, D.

Rodriguez, P.

N. Korneev, P. Rodriguez, B. Sanchez, S. Stepanov, “Non-steady-state photoelectromotive-force based GaAs adaptive photodetectors at 632.8 nm,” Optik 102, 21–23 (1996).

N. Korneev, P. Rodriguez, S. Stepanov, “Broadband detection of phase modulation in 10 MHz frequency range using a GaAs adaptive photodetector,” Electron. Lett. 31, 483–485 (1995).
[CrossRef]

Sanchez, B.

N. Korneev, P. Rodriguez, B. Sanchez, S. Stepanov, “Non-steady-state photoelectromotive-force based GaAs adaptive photodetectors at 632.8 nm,” Optik 102, 21–23 (1996).

Sokolov, I. A.

R. H. Marshall, I. A. Sokolov, Y. N. Ning, A. W. Palmer, K. T. V. Grattan, “Photo-electromotive force crystals for interferometric measurement of vibrational response,” Meas. Sci. Technol. 7, 1683–1686 (1996).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

I. A. Sokolov, V. V. Kulikov, C. Kalpouzos, N. A. Vainos, “Laser vibrometer using GaAs adaptive photodetectors based on the effect of the non-steady-state photoelectromotive force,” in Third International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, E. P. Tomasini, ed., Proc. SPIE3411, 68–75 (1998).
[CrossRef]

Stepanov, S.

N. Korneev, P. Rodriguez, B. Sanchez, S. Stepanov, “Non-steady-state photoelectromotive-force based GaAs adaptive photodetectors at 632.8 nm,” Optik 102, 21–23 (1996).

N. Korneev, P. Rodriguez, S. Stepanov, “Broadband detection of phase modulation in 10 MHz frequency range using a GaAs adaptive photodetector,” Electron. Lett. 31, 483–485 (1995).
[CrossRef]

Stepanov, S. I.

N. A. Korneev, S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

Tiziani, H. J.

Trivedi, S.

F. Jin, J. B. Khurgin, S. Trivedi, C. C. Wang, E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
[CrossRef]

C. C. Wang, F. Davidson, S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
[CrossRef] [PubMed]

Trofimov, G. S.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

Vainos, N. A.

I. A. Sokolov, V. V. Kulikov, C. Kalpouzos, N. A. Vainos, “Laser vibrometer using GaAs adaptive photodetectors based on the effect of the non-steady-state photoelectromotive force,” in Third International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, E. P. Tomasini, ed., Proc. SPIE3411, 68–75 (1998).
[CrossRef]

Vlad, V. I.

Wang, C. C.

F. Jin, J. B. Khurgin, S. Trivedi, C. C. Wang, E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
[CrossRef]

C. C. Wang, F. Davidson, “Optical spectral analysis using moving space-charge field effects in photoconductive semiconductors,” J. Opt. Soc. Am. B 13, 1376–1383 (1996).
[CrossRef]

C. C. Wang, F. Davidson, S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
[CrossRef] [PubMed]

C. C. Wang, “Moving space charge field effects in photoconductive semiconductors and their applications,” Ph.D. dissertation (Johns Hopkins University, Baltimore, Md., 1995).

Appl. Opt. (4)

Appl. Phys. Lett. (1)

F. Jin, J. B. Khurgin, S. Trivedi, C. C. Wang, E. Gad, “Displacement measurement and surface profiling using semi-insulating photoconductive semiconductors and linearly frequency-ramped lasers,” Appl. Phys. Lett. 75, 1374–1376 (1999).
[CrossRef]

Electron. Lett. (2)

A. Dandridge, R. O. Miles, T. G. Giallorenzi, “Diode laser sensor,” Electron. Lett. 16, 948–949 (1980).
[CrossRef]

N. Korneev, P. Rodriguez, S. Stepanov, “Broadband detection of phase modulation in 10 MHz frequency range using a GaAs adaptive photodetector,” Electron. Lett. 31, 483–485 (1995).
[CrossRef]

J. Appl. Phys. (1)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-electromotive-force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

J. Mod. Opt. (1)

N. A. Korneev, S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

R. H. Marshall, I. A. Sokolov, Y. N. Ning, A. W. Palmer, K. T. V. Grattan, “Photo-electromotive force crystals for interferometric measurement of vibrational response,” Meas. Sci. Technol. 7, 1683–1686 (1996).
[CrossRef]

Opt. Lett. (1)

Optik (1)

N. Korneev, P. Rodriguez, B. Sanchez, S. Stepanov, “Non-steady-state photoelectromotive-force based GaAs adaptive photodetectors at 632.8 nm,” Optik 102, 21–23 (1996).

Rev. Prog. Quantitative Nondestr. Eval. (1)

P. V. Mitchell, G. J. Dunning, S. W. McCahon, M. B. Klein, T. R. O’Meara, D. M. Pepper, “Compensated high bandwidth laser ultrasonic detector based on photo-induced EMF in GaAs,” Rev. Prog. Quantitative Nondestr. Eval. 15, 2149–2155 (1996).
[CrossRef]

Other (2)

I. A. Sokolov, V. V. Kulikov, C. Kalpouzos, N. A. Vainos, “Laser vibrometer using GaAs adaptive photodetectors based on the effect of the non-steady-state photoelectromotive force,” in Third International Conference on Vibration Measurements by Laser Techniques: Advances and Applications, E. P. Tomasini, ed., Proc. SPIE3411, 68–75 (1998).
[CrossRef]

C. C. Wang, “Moving space charge field effects in photoconductive semiconductors and their applications,” Ph.D. dissertation (Johns Hopkins University, Baltimore, Md., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for displacement measurement: BS, beam splitter.

Fig. 2
Fig. 2

ac current is present when there is an OPD. (a) Wavelength-modulated light source, (b) carrier concentration distributions, (c) photoelectromotive fields for two extreme phases, (d) Photo-emf current. Λ = 2π/K g .

Fig. 3
Fig. 3

Spectra of modulated and unmodulated lasers. The separation between the two peaks for the modulated laser is 0.075 nm.

Fig. 4
Fig. 4

Signal from a Michelson interferometer for two different OPD’s between two arms. Both of the traces are triggered by the modulation signal.

Fig. 5
Fig. 5

Linear response of photo-emf current versus displacement ΔL when ΔkΔ L ≪ 1. Inset, periodic response of photo-emf current for large displacement.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Ir, t=12ηEL1expjω1t-jkL1·r+|EL2|expjϕ0+jω2t-jkL2·r+|ES1|exp-j 2πλ1 ΔL+jω1t-jkS1·r+|ES2|expjϕ0-j 2πλ2 ΔL+jω2t-jkS2·r2,
Ix, t=Ix=I01+½ mcosKgx+ϕ,
I0=|EL1|2+|EL2|2+|ES1|2+|ES2|2/2η, Kg=kS1-kL1kS2-kL2, m=2I0|EL1ES1|+|EL2ES2|cosΔkΔL2+|EL2|2|ES2|2 sin2ΔkΔL]1/2
ϕ=2πλ1 ΔL+tan-1|EL2ES2|sinΔkΔL|EL1ES1|+|EL2ES2|cosΔkΔL
jt=jmax sinΔϕexp-t/τg,
jt=jmax sinEL2EL1ES2ES10T/2-EL2EL1ES2ES1T/2T×sinΔkΔLexp-t/τgjmaxI2I10T/2-I2I1T/2TsinΔkΔLexp-t/τg,
jt-jmaxI2I1T/2T sinΔkΔLexp-t/τg;
jt-jmax sinΔkΔLexp-t/τg.

Metrics