Abstract

We have developed a simple method that uses cw irradiation from an argon laser to measure the damage threshold of KTP crystals. Our experimental results show that there are two types of damage in KTP crystal, depending on the polarization of the incident laser beam. One type of optical damage is the appearance of gray tracks, including both dark tracks and orange dots, when the pump polarization is perpendicular to the z axis. The other type is invisible damage when the polarization is parallel to the z axis. In addition, we have also observed weak photorefractive two-wave mixing in KTP crystals in each of these polarization states. After a systematic analysis we have concluded that the first type of damage is due to the formation and absorption of Ti3+ and Fe3+ centers and the second is due to the drift of K+ ions. The weak photorefractive effect is the result of screening of the electric field by the drifted K+ ions.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tsunekane, N. Tachuchi, H. Inaba, “Elimination of chaos in a multilongitudinal-mode, diode-pumped, 6-W continuous-wave, intracavity-doubled Nd:YAG laser,” Opt. Lett. 22, 1000–1002 (1997).
    [CrossRef] [PubMed]
  2. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1997).
    [CrossRef]
  3. M. P. Scripsick, G. E. Ruland, “Laser induced optical damage in KTP,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 85–89.
  4. X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers, L. E. Myers, eds., Proc. SPIE3610, 9–14 (1999).
    [CrossRef]
  5. A. Alexandrovski, M. M. Fejer, G. Mitchell, “CW gray-track formation in KTP,” in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CFF5, pp. 531–532.
  6. J. K. Tyminski, “Photorefractive damage in KTP used as second-harmonic generator,” J. Appl. Phys. 70, 5570–5576 (1991).
    [CrossRef]
  7. M. G. Roelofs, “Identification of Ti3+ in potassium titanyl phosphate and its possible role in laser damage,” J. Appl. Phys. 65, 4976–4982 (1989).
    [CrossRef]
  8. M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66, 3428–3430 (1995).
    [CrossRef]
  9. D. W. Cooke, B. L. Bennett, R. E. Muenchausen, D. M. Wayne, “Pyroelectrically induced optical emission from potassium titanyl phosphate crystals,” Appl. Phys. Lett. 71, 1338–1340 (1997).
    [CrossRef]
  10. J. D. Bierlein, C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
    [CrossRef]

1997 (2)

M. Tsunekane, N. Tachuchi, H. Inaba, “Elimination of chaos in a multilongitudinal-mode, diode-pumped, 6-W continuous-wave, intracavity-doubled Nd:YAG laser,” Opt. Lett. 22, 1000–1002 (1997).
[CrossRef] [PubMed]

D. W. Cooke, B. L. Bennett, R. E. Muenchausen, D. M. Wayne, “Pyroelectrically induced optical emission from potassium titanyl phosphate crystals,” Appl. Phys. Lett. 71, 1338–1340 (1997).
[CrossRef]

1995 (1)

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66, 3428–3430 (1995).
[CrossRef]

1991 (1)

J. K. Tyminski, “Photorefractive damage in KTP used as second-harmonic generator,” J. Appl. Phys. 70, 5570–5576 (1991).
[CrossRef]

1989 (1)

M. G. Roelofs, “Identification of Ti3+ in potassium titanyl phosphate and its possible role in laser damage,” J. Appl. Phys. 65, 4976–4982 (1989).
[CrossRef]

1986 (1)

J. D. Bierlein, C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

Alexandrovski, A.

A. Alexandrovski, M. M. Fejer, G. Mitchell, “CW gray-track formation in KTP,” in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CFF5, pp. 531–532.

Arweiler, C. B.

J. D. Bierlein, C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

Bennett, B. L.

D. W. Cooke, B. L. Bennett, R. E. Muenchausen, D. M. Wayne, “Pyroelectrically induced optical emission from potassium titanyl phosphate crystals,” Appl. Phys. Lett. 71, 1338–1340 (1997).
[CrossRef]

Bierlein, J. D.

J. D. Bierlein, C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

Cooke, D. W.

D. W. Cooke, B. L. Bennett, R. E. Muenchausen, D. M. Wayne, “Pyroelectrically induced optical emission from potassium titanyl phosphate crystals,” Appl. Phys. Lett. 71, 1338–1340 (1997).
[CrossRef]

Ding, Y. J.

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers, L. E. Myers, eds., Proc. SPIE3610, 9–14 (1999).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1997).
[CrossRef]

Fejer, M. M.

A. Alexandrovski, M. M. Fejer, G. Mitchell, “CW gray-track formation in KTP,” in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CFF5, pp. 531–532.

Goellner, S. H.

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66, 3428–3430 (1995).
[CrossRef]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1997).
[CrossRef]

Halliburton, L. E.

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66, 3428–3430 (1995).
[CrossRef]

Hopkins, F. K.

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66, 3428–3430 (1995).
[CrossRef]

Inaba, H.

Khurgin, J. B.

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers, L. E. Myers, eds., Proc. SPIE3610, 9–14 (1999).
[CrossRef]

Liu, Y.

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers, L. E. Myers, eds., Proc. SPIE3610, 9–14 (1999).
[CrossRef]

Lolacono, D. N.

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66, 3428–3430 (1995).
[CrossRef]

Mitchell, G.

A. Alexandrovski, M. M. Fejer, G. Mitchell, “CW gray-track formation in KTP,” in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CFF5, pp. 531–532.

Mu, X.

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers, L. E. Myers, eds., Proc. SPIE3610, 9–14 (1999).
[CrossRef]

Muenchausen, R. E.

D. W. Cooke, B. L. Bennett, R. E. Muenchausen, D. M. Wayne, “Pyroelectrically induced optical emission from potassium titanyl phosphate crystals,” Appl. Phys. Lett. 71, 1338–1340 (1997).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1997).
[CrossRef]

Roelofs, M. G.

M. G. Roelofs, “Identification of Ti3+ in potassium titanyl phosphate and its possible role in laser damage,” J. Appl. Phys. 65, 4976–4982 (1989).
[CrossRef]

Rottenberg, J.

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66, 3428–3430 (1995).
[CrossRef]

Ruland, G. E.

M. P. Scripsick, G. E. Ruland, “Laser induced optical damage in KTP,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 85–89.

Scripsick, M. P.

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66, 3428–3430 (1995).
[CrossRef]

M. P. Scripsick, G. E. Ruland, “Laser induced optical damage in KTP,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 85–89.

Tachuchi, N.

Tsunekane, M.

Tyminski, J. K.

J. K. Tyminski, “Photorefractive damage in KTP used as second-harmonic generator,” J. Appl. Phys. 70, 5570–5576 (1991).
[CrossRef]

Wang, J.

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers, L. E. Myers, eds., Proc. SPIE3610, 9–14 (1999).
[CrossRef]

Wayne, D. M.

D. W. Cooke, B. L. Bennett, R. E. Muenchausen, D. M. Wayne, “Pyroelectrically induced optical emission from potassium titanyl phosphate crystals,” Appl. Phys. Lett. 71, 1338–1340 (1997).
[CrossRef]

Wei, J.

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers, L. E. Myers, eds., Proc. SPIE3610, 9–14 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

M. P. Scripsick, D. N. Lolacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, F. K. Hopkins, “Defects responsible for gray tracks in flux-grown KTiOPO4,” Appl. Phys. Lett. 66, 3428–3430 (1995).
[CrossRef]

D. W. Cooke, B. L. Bennett, R. E. Muenchausen, D. M. Wayne, “Pyroelectrically induced optical emission from potassium titanyl phosphate crystals,” Appl. Phys. Lett. 71, 1338–1340 (1997).
[CrossRef]

J. D. Bierlein, C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

J. Appl. Phys. (2)

J. K. Tyminski, “Photorefractive damage in KTP used as second-harmonic generator,” J. Appl. Phys. 70, 5570–5576 (1991).
[CrossRef]

M. G. Roelofs, “Identification of Ti3+ in potassium titanyl phosphate and its possible role in laser damage,” J. Appl. Phys. 65, 4976–4982 (1989).
[CrossRef]

Opt. Lett. (1)

Other (4)

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1997).
[CrossRef]

M. P. Scripsick, G. E. Ruland, “Laser induced optical damage in KTP,” in Advanced Solid State Lasers, W. R. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 85–89.

X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers, L. E. Myers, eds., Proc. SPIE3610, 9–14 (1999).
[CrossRef]

A. Alexandrovski, M. M. Fejer, G. Mitchell, “CW gray-track formation in KTP,” in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CFF5, pp. 531–532.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for our KTP damage-threshold measurements.

Fig. 2
Fig. 2

Typical evolution of the transmissions for the highly purified (upper curve) and the common (lower curve) KTP samples at polarization perpendicular to the z axis and with a testing power of 1 W.

Fig. 3
Fig. 3

Dark track and orange dots (250×) in (a) highly purified and (b) common KTP samples. In the highly purified KTP, only dark tracks were formed. The cw irradiation intensity for tracks 1–4 was 2.6 × 105 W/cm2, and that for tracks 5–7 was 1.3 × 105 W/cm2. In the common KTP, one orange dot (upper) and one dark track (lower) were formed for every irradiation point. The cw irradiation intensity for tracks 1–5 was 1.3 × 105 W/cm2; that for tracks 6 and 7 was 5.2 × 104 W/cm2; and that for tracks 8 and 9 was 2.6 × 104 W/cm2.

Fig. 4
Fig. 4

Typical evolution of the transmissions for the highly purified (upper curve) and the common (lower curve) KTP samples at polarization parallel to the z axis and with a testing power of 1 W.

Fig. 5
Fig. 5

Experimental setup for photorefractive TWM in a KTP crystal. M1–M3, mirrors; BS, beam splitter; D1, D2, photodetectors.

Metrics