Abstract

Pumping at 885 nm from thermally excited ground-state levels directly to the Nd:YAG upper lasing level is experimentally demonstrated by use of a Ti:sapphire pump laser. This approach utilizes thermal energy contained within the laser medium to provide part of the pump energy required to achieve population inversion. Slope efficiency increased by 12% compared with traditional pump band excitation (λpump = 808 nm) and by 7% compared with ground-state direct pumping (λpump = 869 nm). The combined transition from the first and second thermally excited Stark components of the ground state (4 I 9/2) to the upper lasing level (4 F 3/2) has characteristics that make thermally boosted pumping a suitable candidate for use with diode lasers: reasonable absorption (1.8 cm-1) and bandwidth (2.7 nm FWHM). A model suggests that, compared with traditional 808-nm pumping, heat could be reduced by 40% by use of thermally boosted pumping.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
    [CrossRef]
  2. D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
    [CrossRef]
  3. M. Tsunekane, N. Taguchi, T. Kasamatsu, H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
    [CrossRef]
  4. B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, R. W. Solarz, “High average power diode pumped slab laser,” IEEE J. Quantum Electron. 28, 992–996 (1992).
    [CrossRef]
  5. S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in OSA Trends in Optics and Photonics, Vol. 26 of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds. (Optical Society of America, Washington, D.C., 1999), pp. 38–44.
  6. Q. Lu, N. Kugler, H. Weber, S. Dong, N. Muller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
    [CrossRef]
  7. S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
    [CrossRef]
  8. S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
    [CrossRef]
  9. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren, “Low heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
    [CrossRef]
  10. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature (London) 377, 500–502 (1995).
    [CrossRef]
  11. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–121 (1999).
    [CrossRef]
  12. M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE 56, 196–197 (1968).
    [CrossRef]
  13. R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, I. Paiss, “Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level,” Appl. Opt. 38, 7382–7385 (1999).
    [CrossRef]
  14. J. T. Verdeyen, Laser Electronics, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 232.
  15. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1995), pp. 98–99.
  16. Ref. 15, p. 93.

1999

1998

D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
[CrossRef]

1997

M. Tsunekane, N. Taguchi, T. Kasamatsu, H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[CrossRef]

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren, “Low heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

1996

Q. Lu, N. Kugler, H. Weber, S. Dong, N. Muller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

1995

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature (London) 377, 500–502 (1995).
[CrossRef]

1993

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

1992

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, R. W. Solarz, “High average power diode pumped slab laser,” IEEE J. Quantum Electron. 28, 992–996 (1992).
[CrossRef]

1968

M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE 56, 196–197 (1968).
[CrossRef]

Albrecht, G.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, R. W. Solarz, “High average power diode pumped slab laser,” IEEE J. Quantum Electron. 28, 992–996 (1992).
[CrossRef]

Beach, R.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, R. W. Solarz, “High average power diode pumped slab laser,” IEEE J. Quantum Electron. 28, 992–996 (1992).
[CrossRef]

Beach, R. J.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Benett, W. J.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, R. W. Solarz, “High average power diode pumped slab laser,” IEEE J. Quantum Electron. 28, 992–996 (1992).
[CrossRef]

Bibeau, C.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Bowman, S. R.

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–121 (1999).
[CrossRef]

Brown, D. C.

D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
[CrossRef]

Bruesselbach, H. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren, “Low heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature (London) 377, 500–502 (1995).
[CrossRef]

Byren, R. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren, “Low heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

Comaskey, B. J.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, R. W. Solarz, “High average power diode pumped slab laser,” IEEE J. Quantum Electron. 28, 992–996 (1992).
[CrossRef]

Contag, K.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in OSA Trends in Optics and Photonics, Vol. 26 of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds. (Optical Society of America, Washington, D.C., 1999), pp. 38–44.

Dong, S.

Q. Lu, N. Kugler, H. Weber, S. Dong, N. Muller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Ebbers, C. A.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Edwards, B. C.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature (London) 377, 500–502 (1995).
[CrossRef]

Emanuel, M. A.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Epstein, R. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature (London) 377, 500–502 (1995).
[CrossRef]

Erhard, S.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in OSA Trends in Optics and Photonics, Vol. 26 of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds. (Optical Society of America, Washington, D.C., 1999), pp. 38–44.

Fan, T. Y.

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

Freitas, B. L.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, R. W. Solarz, “High average power diode pumped slab laser,” IEEE J. Quantum Electron. 28, 992–996 (1992).
[CrossRef]

Giesen, A.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in OSA Trends in Optics and Photonics, Vol. 26 of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds. (Optical Society of America, Washington, D.C., 1999), pp. 38–44.

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature (London) 377, 500–502 (1995).
[CrossRef]

Honea, E. C.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Inaba, H.

M. Tsunekane, N. Taguchi, T. Kasamatsu, H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[CrossRef]

Jackel, S.

R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, I. Paiss, “Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level,” Appl. Opt. 38, 7382–7385 (1999).
[CrossRef]

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

Johannsen, I.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in OSA Trends in Optics and Photonics, Vol. 26 of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds. (Optical Society of America, Washington, D.C., 1999), pp. 38–44.

Karszewski, M.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in OSA Trends in Optics and Photonics, Vol. 26 of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds. (Optical Society of America, Washington, D.C., 1999), pp. 38–44.

Kasamatsu, T.

M. Tsunekane, N. Taguchi, T. Kasamatsu, H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[CrossRef]

Katz, M.

Kaufman, A.

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1995), pp. 98–99.

Krupke, W. F.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Kugler, N.

Q. Lu, N. Kugler, H. Weber, S. Dong, N. Muller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Lallouz, R.

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

Lavi, R.

R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, I. Paiss, “Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level,” Appl. Opt. 38, 7382–7385 (1999).
[CrossRef]

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

Lebiush, E.

Lu, Q.

Q. Lu, N. Kugler, H. Weber, S. Dong, N. Muller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Marshall, C. D.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Moshe, I.

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

Muller, N.

Q. Lu, N. Kugler, H. Weber, S. Dong, N. Muller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Mundinger, D.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, R. W. Solarz, “High average power diode pumped slab laser,” IEEE J. Quantum Electron. 28, 992–996 (1992).
[CrossRef]

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature (London) 377, 500–502 (1995).
[CrossRef]

Page, R. H.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Paiss, I.

Payne, S. A.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Petty, C.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, R. W. Solarz, “High average power diode pumped slab laser,” IEEE J. Quantum Electron. 28, 992–996 (1992).
[CrossRef]

Reeder, R. A.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren, “Low heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

Ross, M.

M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE 56, 196–197 (1968).
[CrossRef]

Rupp, T.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in OSA Trends in Optics and Photonics, Vol. 26 of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds. (Optical Society of America, Washington, D.C., 1999), pp. 38–44.

Schaffers, K. I.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Skidmore, J. A.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Solarz, R. W.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, R. W. Solarz, “High average power diode pumped slab laser,” IEEE J. Quantum Electron. 28, 992–996 (1992).
[CrossRef]

Stewen, C.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in OSA Trends in Optics and Photonics, Vol. 26 of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds. (Optical Society of America, Washington, D.C., 1999), pp. 38–44.

Sumida, D. S.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren, “Low heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

Sutton, S. B.

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

Taguchi, N.

M. Tsunekane, N. Taguchi, T. Kasamatsu, H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[CrossRef]

Tsunekane, M.

M. Tsunekane, N. Taguchi, T. Kasamatsu, H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[CrossRef]

Tzuk, Y.

VanLue, D.

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, R. W. Solarz, “High average power diode pumped slab laser,” IEEE J. Quantum Electron. 28, 992–996 (1992).
[CrossRef]

Verdeyen, J. T.

J. T. Verdeyen, Laser Electronics, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 232.

Weber, H.

Q. Lu, N. Kugler, H. Weber, S. Dong, N. Muller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Winik, M.

Wittrock, U.

Q. Lu, N. Kugler, H. Weber, S. Dong, N. Muller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35, 115–121 (1999).
[CrossRef]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–572 (1998).
[CrossRef]

B. J. Comaskey, R. Beach, G. Albrecht, W. J. Benett, B. L. Freitas, C. Petty, D. VanLue, D. Mundinger, R. W. Solarz, “High average power diode pumped slab laser,” IEEE J. Quantum Electron. 28, 992–996 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Tsunekane, N. Taguchi, T. Kasamatsu, H. Inaba, “Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry,” IEEE J. Sel. Top. Quantum Electron. 3, 9–18 (1997).
[CrossRef]

S. A. Payne, R. J. Beach, C. Bibeau, C. A. Ebbers, M. A. Emanuel, E. C. Honea, C. D. Marshall, R. H. Page, K. I. Schaffers, J. A. Skidmore, S. B. Sutton, W. F. Krupke, “Diode arrays, crystals, and thermal management for solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 71–81 (1997).
[CrossRef]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, R. W. Byren, “Low heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997).
[CrossRef]

Nature (London)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature (London) 377, 500–502 (1995).
[CrossRef]

Opt. Eng.

S. Jackel, I. Moshe, A. Kaufman, R. Lavi, R. Lallouz, “High energy Nd:Cr:GSGG lasers based on phase and polarization conjugated multiple-pass amplifiers,” Opt. Eng. 36, 2031–2036 (1997).
[CrossRef]

Opt. Quantum Electron.

Q. Lu, N. Kugler, H. Weber, S. Dong, N. Muller, U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd:YAG rods,” Opt. Quantum Electron. 28, 57–69 (1996).
[CrossRef]

Proc. IEEE

M. Ross, “YAG laser operation by semiconductor laser pumping,” Proc. IEEE 56, 196–197 (1968).
[CrossRef]

Other

J. T. Verdeyen, Laser Electronics, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 1989), p. 232.

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1995), pp. 98–99.

Ref. 15, p. 93.

S. Erhard, A. Giesen, M. Karszewski, T. Rupp, C. Stewen, I. Johannsen, K. Contag, “Novel pump design of Yb:YAG thin disc laser for operation at room temperature with improved efficiency,” in OSA Trends in Optics and Photonics, Vol. 26 of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, U. Keller, eds. (Optical Society of America, Washington, D.C., 1999), pp. 38–44.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Nd:YAG energy level diagram with a schematic description of traditional and direct pumping from either the ground level or thermally excited Stark components of the ground state.

Fig. 2
Fig. 2

Fluorescence and heat fractions calculated for traditional pumping (808 nm) assuming quantum efficiencies of 0.95 (▼) and 0.90 (▲) and for thermally boosted direct pumping (●) as functions of the stimulated emission fraction by use of Brown’s model.2

Fig. 3
Fig. 3

Heat ratios for thermally boosted direct pumping versus traditional pumping as a function of the stimulated emission fraction, by use of Brown’s model,2 assuming traditional pumping quantum efficiencies of 0.95 (▼) and 0.90 (▲).

Fig. 4
Fig. 4

Absorption spectrum of Nd:YAG (doping of 1.1 at. %) at room temperature, which describes the excitation from ground (0) and thermally excited (1–3) states to the upper lasing level, both to the R1 and R2 sublevels.

Fig. 5
Fig. 5

Schematic setup of the Ti:sapphire-pumped Nd:YAG oscillator.

Fig. 6
Fig. 6

Nd:YAG cw performance for direct ground level (▲), thermally excited states (×), and traditional band (■ and ●) pumping, with a 95% output coupler. P in is the pump power just interior to the rod’s pumped face.

Tables (3)

Tables Icon

Table 1 Summary of Predicted Threshold and Slope Ratios for Different Pumping Schemesa

Tables Icon

Table 2 Estimate of Heat Generated During Laser Operationa

Tables Icon

Table 3 Summary of the Average Slope Efficiency and Threshold Ratiosa

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ηslopeλ1ηslopeλ2=ηSλ1ηSλ2ηQEλ1ηQEλ2=λ1λ2ηQEλ1ηQEλ2,
Pthλ1Pthλ2=ηslopeλ2ηslopeλ1.
PH=PHNR+PHRAD.
PHNR=1-ηQEPabs.
PHRAD=PHQU+PHStokes.
PHQU=ηQE1-ηQUPabs.
PHStokes = ηQEηQU1-(λP/λLPabs.
PHPabs=1-ηQEηQUλPλL.
PH1PH2=λL-ηQE1ηQU1λ1λL-ηQE2ηQU2λ2.
ρHLPHPL=PHPabsPabsPPPPPL.
ρHL=ηabsηlaser1-ηQEηQUλPλL.

Metrics