Abstract

The power scaling and frequency stabilization of a high-power, injection-locked, arc-lamp-pumped Nd:YAG laser at 1064 nm are discussed theoretically and experimentally. Thermal lensing and induced birefringence at high pump powers are modeled, and the effectiveness of the model for compensating thermal lensing is demonstrated with four different laser heads. Two distinct active frequency-stabilization schemes for injection-locked lasers are also compared theoretically and experimentally. These efforts yield a 24-W, linearly polarized, continuous-wave, TEM00 output with a spectral linewidth of 1.5 Hz measured by heterodyne detection.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hirano, Y. Koyata, S. Yamamoto, K. Kasahara, T. Tajime, “208-W TEM00 operation of a diode-pumped Nd:YAG rod laser,” Opt. Lett. 24, 679–681 (1999).
    [CrossRef]
  2. D. Golla, M. Bode, S. Knoke, W. Schone, A. Tunnermann, “62-W cw TEM00 Nd:YAG laser side-pumped by fiber-coupled diode lasers,” Opt. Lett. 21, 210–212 (1996).
    [CrossRef] [PubMed]
  3. I. Freitag, D. Golla, S. Knoke, W. Schone, H. Zellmer, A. Tunnermann, H. Welling, “Amplitude and frequency stability of a diode-pumped Nd:YAG laser operating at a single-frequency continuous-wave output power of 20 W,” Opt. Lett. 20, 462–464 (1995).
    [CrossRef] [PubMed]
  4. W. Koechner, Solid State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996), Chap. 7.
    [CrossRef]
  5. M. P. Murdough, C. A. Denman, “Mode-volume and pump-power limitations in injection-locked TEM00 Nd:YAG rod lasers,” Appl. Opt. 35, 5925–5936 (1996).
    [CrossRef] [PubMed]
  6. J. Sherman, “Thermal compensation of a cw-pumped Nd:YAG laser,” Appl. Opt. 37, 7789–7796 (1998).
    [CrossRef]
  7. R. Marinez-Herrero, P. M. Mejias, N. Hodgson, H. Weber, “Beam-quality changes generated by thermally-induced spherical aberration in laser cavities,” IEEE J. Quantum. Electron. 31, 2173–2176 (1995).
    [CrossRef]
  8. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 29.
  9. R. Barillet, “Injection-locking technique for the detection of gravitational waves,” Ann. Telecommun. 51, 553–566 (1996).
  10. A. D. Farinas, E. K. Gustafson, R. L. Byer, “Frequency and intensity noise in an injection-locked, solid-state laser,” J. Opt. Soc. Am. B 12, 328–334 (1995).
    [CrossRef]
  11. R. Barillet, A. Brillet, R. Chiche, F. Cleva, L. Latrach, C. N. Man, “An injection-locked ND:YAG laser for the interferometric detection of gravitational waves,” Meas. Sci. Technol. 7, 162–169 (1996).
    [CrossRef]
  12. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), Chaps. 6 and 7.
  13. A complete description of the experimental determination of βr,ϕ is found in M. P. Murdough, “Power scaling of cw injection-locked Nd:YAG lasers,” Master of Science thesis (University of New Mexico, Albuquerque, N.M., 1995).
  14. S. T. Yang, Y. Imai, M. Oka, N. Eguchi, S. Kubota, “Frequency-stabilized, 10-W continuous-wave, laser-diode end-pumped, injection-locked Nd:YAG laser,” Opt. Lett. 21, 1676–1678 (1996).
    [CrossRef] [PubMed]
  15. M. Musha, K. Nakagawa, K. Ueda, “Wideband and high frequency stabilization of an injection-locked Nd:YAG laser to a high-finesse Fabry–Perot cavity,” Opt. Lett. 22, 1177–1179 (1997).
    [CrossRef] [PubMed]
  16. Similar expressions obtained in Refs. 9 and 11.
  17. C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, R. L. Byer, “Injection locking of a13-W cw Nd:YAG ring laser,” Opt. Lett. 14, 1189–1191 (1989).
    [CrossRef] [PubMed]
  18. T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1116 (1992).
    [CrossRef]

1999 (1)

1998 (1)

1997 (1)

1996 (5)

1995 (3)

1992 (1)

T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1116 (1992).
[CrossRef]

1989 (1)

Barillet, R.

R. Barillet, A. Brillet, R. Chiche, F. Cleva, L. Latrach, C. N. Man, “An injection-locked ND:YAG laser for the interferometric detection of gravitational waves,” Meas. Sci. Technol. 7, 162–169 (1996).
[CrossRef]

R. Barillet, “Injection-locking technique for the detection of gravitational waves,” Ann. Telecommun. 51, 553–566 (1996).

Bode, M.

Brillet, A.

R. Barillet, A. Brillet, R. Chiche, F. Cleva, L. Latrach, C. N. Man, “An injection-locked ND:YAG laser for the interferometric detection of gravitational waves,” Meas. Sci. Technol. 7, 162–169 (1996).
[CrossRef]

Byer, R. L.

Chiche, R.

R. Barillet, A. Brillet, R. Chiche, F. Cleva, L. Latrach, C. N. Man, “An injection-locked ND:YAG laser for the interferometric detection of gravitational waves,” Meas. Sci. Technol. 7, 162–169 (1996).
[CrossRef]

Cleva, F.

R. Barillet, A. Brillet, R. Chiche, F. Cleva, L. Latrach, C. N. Man, “An injection-locked ND:YAG laser for the interferometric detection of gravitational waves,” Meas. Sci. Technol. 7, 162–169 (1996).
[CrossRef]

Day, T.

T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1116 (1992).
[CrossRef]

C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, R. L. Byer, “Injection locking of a13-W cw Nd:YAG ring laser,” Opt. Lett. 14, 1189–1191 (1989).
[CrossRef] [PubMed]

Denman, C. A.

Eguchi, N.

Farinas, A. D.

Freitag, I.

Golla, D.

Gustafson, E. K.

Hirano, Y.

Hodgson, N.

R. Marinez-Herrero, P. M. Mejias, N. Hodgson, H. Weber, “Beam-quality changes generated by thermally-induced spherical aberration in laser cavities,” IEEE J. Quantum. Electron. 31, 2173–2176 (1995).
[CrossRef]

Imai, Y.

Kasahara, K.

Knoke, S.

Koechner, W.

W. Koechner, Solid State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996), Chap. 7.
[CrossRef]

Koyata, Y.

Kubota, S.

Latrach, L.

R. Barillet, A. Brillet, R. Chiche, F. Cleva, L. Latrach, C. N. Man, “An injection-locked ND:YAG laser for the interferometric detection of gravitational waves,” Meas. Sci. Technol. 7, 162–169 (1996).
[CrossRef]

Man, C. N.

R. Barillet, A. Brillet, R. Chiche, F. Cleva, L. Latrach, C. N. Man, “An injection-locked ND:YAG laser for the interferometric detection of gravitational waves,” Meas. Sci. Technol. 7, 162–169 (1996).
[CrossRef]

Marinez-Herrero, R.

R. Marinez-Herrero, P. M. Mejias, N. Hodgson, H. Weber, “Beam-quality changes generated by thermally-induced spherical aberration in laser cavities,” IEEE J. Quantum. Electron. 31, 2173–2176 (1995).
[CrossRef]

Mejias, P. M.

R. Marinez-Herrero, P. M. Mejias, N. Hodgson, H. Weber, “Beam-quality changes generated by thermally-induced spherical aberration in laser cavities,” IEEE J. Quantum. Electron. 31, 2173–2176 (1995).
[CrossRef]

Murdough, M. P.

M. P. Murdough, C. A. Denman, “Mode-volume and pump-power limitations in injection-locked TEM00 Nd:YAG rod lasers,” Appl. Opt. 35, 5925–5936 (1996).
[CrossRef] [PubMed]

A complete description of the experimental determination of βr,ϕ is found in M. P. Murdough, “Power scaling of cw injection-locked Nd:YAG lasers,” Master of Science thesis (University of New Mexico, Albuquerque, N.M., 1995).

Musha, M.

Nabors, C. D.

Nakagawa, K.

Oka, M.

Schone, W.

Sherman, J.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 29.

Tajime, T.

Tunnermann, A.

Ueda, K.

Weber, H.

R. Marinez-Herrero, P. M. Mejias, N. Hodgson, H. Weber, “Beam-quality changes generated by thermally-induced spherical aberration in laser cavities,” IEEE J. Quantum. Electron. 31, 2173–2176 (1995).
[CrossRef]

Welling, H.

Yamamoto, S.

Yang, S. T.

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), Chaps. 6 and 7.

Zellmer, H.

Ann. Telecommun. (1)

R. Barillet, “Injection-locking technique for the detection of gravitational waves,” Ann. Telecommun. 51, 553–566 (1996).

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two diode laser-pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1116 (1992).
[CrossRef]

IEEE J. Quantum. Electron. (1)

R. Marinez-Herrero, P. M. Mejias, N. Hodgson, H. Weber, “Beam-quality changes generated by thermally-induced spherical aberration in laser cavities,” IEEE J. Quantum. Electron. 31, 2173–2176 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

R. Barillet, A. Brillet, R. Chiche, F. Cleva, L. Latrach, C. N. Man, “An injection-locked ND:YAG laser for the interferometric detection of gravitational waves,” Meas. Sci. Technol. 7, 162–169 (1996).
[CrossRef]

Opt. Lett. (6)

Other (5)

W. Koechner, Solid State Laser Engineering, 4th ed. (Springer-Verlag, New York, 1996), Chap. 7.
[CrossRef]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 29.

Similar expressions obtained in Refs. 9 and 11.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), Chaps. 6 and 7.

A complete description of the experimental determination of βr,ϕ is found in M. P. Murdough, “Power scaling of cw injection-locked Nd:YAG lasers,” Master of Science thesis (University of New Mexico, Albuquerque, N.M., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Ring laser cavity used to test thermo-optical model predictions.

Fig. 2
Fig. 2

Stability criteria and mode radius versus pump power plot for the r- and the ϕ-polarization modes.

Fig. 3
Fig. 3

Power-scaling experimental setup. TFP, thin-film polarizer.

Fig. 4
Fig. 4

Coherent head experimental data.

Fig. 5
Fig. 5

Kigre head experimental data.

Fig. 6
Fig. 6

Granit head experimental data.

Fig. 7
Fig. 7

Experimental setup of techniques 1 and 2.

Fig. 8
Fig. 8

RAV’s.

Tables (2)

Tables Icon

Table 1 Effects of Varying Cavity Parameters on TEM00 Stability and Spot Size Within a Resonant Cavity

Tables Icon

Table 2 Injection Laser Resonator Specifications and Output Power for the Three Pump Heads Used

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

nr=n0-βr,ϕPr2/2,
βr,ϕ=ηTK1πzr0212dndT+n02αCr,ϕ,
Sϕ,ILνnSϕ,sνn1+Gsνn δ+Sϕ,mνnγ,
Sϕ,ILνnSϕ,sνn1+Gsνn δ+Sϕ,mνn1+Gmνn γ,
Sϕ,ILνnSϕ,sνn1+Gsνn1+Gmνnγ δ+Sϕ,mνn1+Gmνnγ γ.
δ=iνnνlock1+iνnνlock,
γ=1+iνnνlockGsνn1+Gsνn1+iνnνlock.
νlockTocFSRJ0β2πPmPIL1/2.

Metrics