Abstract

The strain sensitivity of the fluorescence intensity ratio temperature-sensing technique has been measured to be (2 ± 3) × 10-4%/με in Yb3+-doped fiber, implying a temperature-to-strain cross sensitivity of (2 ± 3) × 10-4 °C/με. The near-zero strain sensitivity means that this optical-fiber sensor technique is well suited for temperature measurement in strain-affected environments.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
    [CrossRef]
  2. J. D. C. Jones, “Review of fibre sensor techniques for temperature-strain discrimination,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 36–39.
  3. T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999).
    [CrossRef]
  4. S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
    [CrossRef]
  5. H. Berthou, C. K. Jorgensen, “Optical-fiber temperature sensor based on upconversion excited fluorescence,” Opt. Lett. 15, 1100–1102 (1990).
    [CrossRef] [PubMed]
  6. E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors,” Appl. Opt. 34, 8019–8025 (1995).
    [CrossRef] [PubMed]
  7. E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue light-emitting-diode-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+:ZBLAN glass,” Opt. Rev. 4, 89–91 (1997).
    [CrossRef]
  8. E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, G. W. Baxter, “Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+-doped silica fiber,” Appl. Opt. 36, 8264–8269 (1997).
    [CrossRef]
  9. S. A. Wade, J. C. Muscat, S. F. Collins, G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70, 4279–4282 (1999).
    [CrossRef]
  10. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
    [CrossRef]
  11. Th. Tröster, T. Gregorian, W. B. Holzapfel, “Energy levels of Nd3+ and Pr3+ in RCl3 under pressure,” Phys. Rev. B 48, 2960–2967 (1993).
    [CrossRef]

1999

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999).
[CrossRef]

S. A. Wade, J. C. Muscat, S. F. Collins, G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70, 4279–4282 (1999).
[CrossRef]

1998

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

1997

E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue light-emitting-diode-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+:ZBLAN glass,” Opt. Rev. 4, 89–91 (1997).
[CrossRef]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, G. W. Baxter, “Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+-doped silica fiber,” Appl. Opt. 36, 8264–8269 (1997).
[CrossRef]

1995

1993

Th. Tröster, T. Gregorian, W. B. Holzapfel, “Energy levels of Nd3+ and Pr3+ in RCl3 under pressure,” Phys. Rev. B 48, 2960–2967 (1993).
[CrossRef]

1990

Baxter, G. W.

S. A. Wade, J. C. Muscat, S. F. Collins, G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70, 4279–4282 (1999).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, G. W. Baxter, “Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+-doped silica fiber,” Appl. Opt. 36, 8264–8269 (1997).
[CrossRef]

E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue light-emitting-diode-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+:ZBLAN glass,” Opt. Rev. 4, 89–91 (1997).
[CrossRef]

E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors,” Appl. Opt. 34, 8019–8025 (1995).
[CrossRef] [PubMed]

Berthou, H.

Collins, S. F.

S. A. Wade, J. C. Muscat, S. F. Collins, G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70, 4279–4282 (1999).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, G. W. Baxter, “Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+-doped silica fiber,” Appl. Opt. 36, 8264–8269 (1997).
[CrossRef]

E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue light-emitting-diode-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+:ZBLAN glass,” Opt. Rev. 4, 89–91 (1997).
[CrossRef]

Dussardier, B.

Grattan, K. T. V.

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
[CrossRef]

Gregorian, T.

Th. Tröster, T. Gregorian, W. B. Holzapfel, “Energy levels of Nd3+ and Pr3+ in RCl3 under pressure,” Phys. Rev. B 48, 2960–2967 (1993).
[CrossRef]

Holzapfel, W. B.

Th. Tröster, T. Gregorian, W. B. Holzapfel, “Energy levels of Nd3+ and Pr3+ in RCl3 under pressure,” Phys. Rev. B 48, 2960–2967 (1993).
[CrossRef]

Jones, J. D. C.

J. D. C. Jones, “Review of fibre sensor techniques for temperature-strain discrimination,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 36–39.

Jorgensen, C. K.

Maurice, E.

Meggitt, B. T.

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
[CrossRef]

Monnom, G.

Muscat, J. C.

S. A. Wade, J. C. Muscat, S. F. Collins, G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70, 4279–4282 (1999).
[CrossRef]

Ostrowsky, D. B.

Palmer, A. W.

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Petreski, B. P.

E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue light-emitting-diode-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+:ZBLAN glass,” Opt. Rev. 4, 89–91 (1997).
[CrossRef]

Rao, Y. J.

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

Saïssy, A.

Sun, T.

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Tröster, Th.

Th. Tröster, T. Gregorian, W. B. Holzapfel, “Energy levels of Nd3+ and Pr3+ in RCl3 under pressure,” Phys. Rev. B 48, 2960–2967 (1993).
[CrossRef]

Wade, S. A.

S. A. Wade, J. C. Muscat, S. F. Collins, G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70, 4279–4282 (1999).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

E. Maurice, S. A. Wade, S. F. Collins, G. Monnom, G. W. Baxter, “Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+-doped silica fiber,” Appl. Opt. 36, 8264–8269 (1997).
[CrossRef]

E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue light-emitting-diode-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+:ZBLAN glass,” Opt. Rev. 4, 89–91 (1997).
[CrossRef]

Zhang, Z. Y.

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation,” J. Appl. Phys. 84, 4649–4654 (1998).
[CrossRef]

Meas. Sci. Technol.

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

Opt. Lett.

Opt. Rev.

E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue light-emitting-diode-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+:ZBLAN glass,” Opt. Rev. 4, 89–91 (1997).
[CrossRef]

Phys. Rev. B

Th. Tröster, T. Gregorian, W. B. Holzapfel, “Energy levels of Nd3+ and Pr3+ in RCl3 under pressure,” Phys. Rev. B 48, 2960–2967 (1993).
[CrossRef]

Rev. Sci. Instrum.

S. A. Wade, J. C. Muscat, S. F. Collins, G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70, 4279–4282 (1999).
[CrossRef]

T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, “Intrinsic strain and temperature characteristics of Yb-doped silica-based optical fibers,” Rev. Sci. Instrum. 70, 1447–1451 (1999).
[CrossRef]

Other

K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, London, 1995).
[CrossRef]

J. D. C. Jones, “Review of fibre sensor techniques for temperature-strain discrimination,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 36–39.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement for studying the behavior of the fluorescence intensity ratio with temperature and strain.

Fig. 2
Fig. 2

(a) Yb3+-doped fiber fluorescence spectrum at 22 °C and at 160 °C. (b) Variation of the fluorescence intensity ratio, I(905 nm)/I(1064 nm) as defined in the text, as a function of temperature and normalized with respect to the same fluorescence intensity ratio at 22 °C.

Fig. 3
Fig. 3

Apparent temperature change that is due to applied strain for the fluorescence intensity ratio in Yb3+ (open circles) and fluorescence lifetime in Yb3+ (filled diamonds).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FIR=β exp-ΔE/kT,
ΔTstrain=ΔFIRstrainΔFIRstrainat 52 με×ΔTequivalent to 52 με.

Metrics