Abstract

By means of radiative transfer simulations we developed a model for estimating the absorption a, the scattering b, and the backscattering b b coefficients in the upper ocean from irradiance reflectance just beneath the sea surface, R(0-), and the average attenuation coefficient for downwelling irradiance, 〈K d1, between the surface and the first attenuation depth. The model accounts for Raman scattering by water, and it does not require any assumption about the spectral shapes of a, b, and b b. The best estimations are obtained for a and b b in the blue and green spectral regions, where errors of a few percent to <10% are expected over a broad range of chlorophyll concentration in water. The model is useful for satellite ocean color applications because the model input, R(0-) and 〈K d1, can be retrieved from remote sensing and the model output, a and b b, is the major determinant of remote-sensing reflectance.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  2. R. Bartz, J. R. V. Zaneveld, H. Park, “A transmissometer for profiling and moored observations in water,” in Ocean Optics V, M. B. White, ed., Proc. SPIE160, 102–108 (1978).
    [CrossRef]
  3. H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relations between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
    [CrossRef] [PubMed]
  4. H. R. Gordon, “Absorption and scattering estimates from irradiance measurements: Monte Carlo simulations,” Limnol. Oceanogr. 36, 769–777 (1991).
    [CrossRef]
  5. J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984).
    [CrossRef]
  6. J. T. O. Kirk, “Estimation of the absorption and scattering coefficient of natural waters by use of underwater irradiance measurements,” Appl. Opt. 33, 3276–3278 (1994).
    [CrossRef] [PubMed]
  7. J. R. V. Zaneveld, R. Bartz, J. C. Kitchen, “Reflective-tube absorption meter,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 124–136 (1990).
    [CrossRef]
  8. C. Moore, J. R. V. Zaneveld, J. C. Kitchen, “Preliminary results from an in situ spectral absorption meter,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 330–337 (1992).
  9. R. A. Maffione, D. R. Dana, “Recent measurements of the spectral backward-scattering coefficient in coastal waters,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 154–159 (1997).
    [CrossRef]
  10. Neither the ac-9 nor the Hydroscat-6 instrument provides direct measurements of the absorption a the backscattering bb coefficients. The determination of a from ac-9 measurement requires a correction for scattering error that may be difficult to estimate accurately. The estimation of bb from Hydroscat-6 requires the conversion of the backscatter signal measured for the scattering angle of ∼140° into the bb value.
  11. R. W. Preisendorfer, “Application of radiative transfer theory to light measurements in the sea,” Union Geod. Geophys. Monogr. 10, 11–30 (1961).
  12. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
    [CrossRef]
  13. J. T. O. Kirk, “Estimation of the scattering coefficient of natural waters using underwater irradiance measurements,” Aust. J. Mar. Freshwater Res. 32, 533–539 (1981).
    [CrossRef]
  14. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angles as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
    [CrossRef] [PubMed]
  15. H. R. Gordon, G. C. Boynton, “Radiance-irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: homogeneous waters,” Appl. Opt. 36, 2636–2641 (1997).
    [CrossRef] [PubMed]
  16. H. R. Gordon, G. C. Boynton, “Radiance-irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: vertically stratified water bodies,” Appl. Opt. 37, 3886–3896 (1998).
    [CrossRef]
  17. P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Seze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 598–615 (1994).
    [CrossRef]
  18. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
    [CrossRef] [PubMed]
  19. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996).
    [CrossRef] [PubMed]
  20. R. W. Austin, T. J. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 239–256.
    [CrossRef]
  21. M. Kishino, J. Ishizaka, H. Satoh, K. Kusaka, S. Saitoh, T. Miyoi, K. Kawasaki, “Optical characteristics of seawater in the North Pacific Ocean,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 173–178 (1997).
    [CrossRef]
  22. R. Austin, T. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” Opt. Eng. 25, 471–479 (1986).
    [CrossRef]
  23. T. Aarup, N. Holt, N. K. Hojerslev, “Optical measurements in the North Sea–Baltic transition zone. III. Statistical analysis of bio-optical data from the Eastern North Sea, the Skagerrak and the Kattegat,” Continental Shelf Res. 16, 1355–1377 (1996).
    [CrossRef]
  24. H. R. Gordon, W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975).
    [CrossRef] [PubMed]
  25. J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991).
    [CrossRef]
  26. A. Morel, H. Loisel, “Apparent optical properties of oceanic water: dependence on the molecular scattering contribution,” Appl. Opt. 37, 4765–4776 (1998).
    [CrossRef]
  27. S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
    [CrossRef]
  28. B. R. Marshall, R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990).
    [CrossRef] [PubMed]
  29. J. Berwald, D. Stramski, C. D. Mobley, D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr. 43, 564–576 (1998).
    [CrossRef]
  30. H. R. Gordon, “Contribution of Raman scattering to water-leaving radiance: a reexamination,” Appl. Opt. 38, 3166–3174 (1999).
    [CrossRef]
  31. C. Cox, W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
    [CrossRef]
  32. C. D. Mobley, B. Gentili, H. R. Gordon, J. Zhonghai, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing under-water light fields,” Appl. Opt. 32, 7484–7504 (1993).
    [CrossRef] [PubMed]
  33. T. J. Petzold, “Volume scattering functions for selected natural waters,” (Scripps Institution of Oceanography, La Jolla, Calif., 1972).
  34. C. D. Mobley, Hydrolight 4.0 User’s Guide (Sequoia Scientific, Mercer Island, Wash., 1998).
  35. F. M. Sogandares, E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
    [CrossRef]
  36. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  37. J. S. Bartlett, K. J. Voss, S. Sathyendranath, A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
    [CrossRef]
  38. D. Antoine, J. M. Andre, A. Morel, “Ocean primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll,” Global Biogeochem. Cycles 10, 57–69 (1996).
    [CrossRef]
  39. R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988).
    [CrossRef] [PubMed]
  40. K. J. Waters, “Effects of Raman scattering on the water-leaving radiance,” J. Geophys. Res. 100, 13,151–13,161 (1995).
    [CrossRef]
  41. H. R. Gordon, “Sensitivity of radiative transfer to small-angle scattering in the ocean: a quantitative assessment,” Appl. Opt. 32, 7505–7511 (1993).
    [CrossRef] [PubMed]
  42. D. Stramski, A. Bricaud, A. Morel, “A database of single-particle optical properties,” presented at the Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998; Ocean Optics XIV CD ROM (Office of Naval Research, Washington, D.C., 1998).

1999

1998

1997

1996

D. Antoine, J. M. Andre, A. Morel, “Ocean primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll,” Global Biogeochem. Cycles 10, 57–69 (1996).
[CrossRef]

T. Aarup, N. Holt, N. K. Hojerslev, “Optical measurements in the North Sea–Baltic transition zone. III. Statistical analysis of bio-optical data from the Eastern North Sea, the Skagerrak and the Kattegat,” Continental Shelf Res. 16, 1355–1377 (1996).
[CrossRef]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996).
[CrossRef] [PubMed]

1995

K. J. Waters, “Effects of Raman scattering on the water-leaving radiance,” J. Geophys. Res. 100, 13,151–13,161 (1995).
[CrossRef]

1994

P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Seze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 598–615 (1994).
[CrossRef]

J. T. O. Kirk, “Estimation of the absorption and scattering coefficient of natural waters by use of underwater irradiance measurements,” Appl. Opt. 33, 3276–3278 (1994).
[CrossRef] [PubMed]

1993

1991

J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991).
[CrossRef]

H. R. Gordon, “Absorption and scattering estimates from irradiance measurements: Monte Carlo simulations,” Limnol. Oceanogr. 36, 769–777 (1991).
[CrossRef]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angles as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
[CrossRef] [PubMed]

1990

1988

1986

R. Austin, T. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” Opt. Eng. 25, 471–479 (1986).
[CrossRef]

1984

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984).
[CrossRef]

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

1981

J. T. O. Kirk, “Estimation of the scattering coefficient of natural waters using underwater irradiance measurements,” Aust. J. Mar. Freshwater Res. 32, 533–539 (1981).
[CrossRef]

1977

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

1975

1961

R. W. Preisendorfer, “Application of radiative transfer theory to light measurements in the sea,” Union Geod. Geophys. Monogr. 10, 11–30 (1961).

1954

Aarup, T.

T. Aarup, N. Holt, N. K. Hojerslev, “Optical measurements in the North Sea–Baltic transition zone. III. Statistical analysis of bio-optical data from the Eastern North Sea, the Skagerrak and the Kattegat,” Continental Shelf Res. 16, 1355–1377 (1996).
[CrossRef]

Andre, J. M.

D. Antoine, J. M. Andre, A. Morel, “Ocean primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll,” Global Biogeochem. Cycles 10, 57–69 (1996).
[CrossRef]

Antoine, D.

D. Antoine, J. M. Andre, A. Morel, “Ocean primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll,” Global Biogeochem. Cycles 10, 57–69 (1996).
[CrossRef]

Austin, R.

R. Austin, T. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” Opt. Eng. 25, 471–479 (1986).
[CrossRef]

Austin, R. W.

R. W. Austin, T. J. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 239–256.
[CrossRef]

Bartlett, J. S.

Bartz, R.

R. Bartz, J. R. V. Zaneveld, H. Park, “A transmissometer for profiling and moored observations in water,” in Ocean Optics V, M. B. White, ed., Proc. SPIE160, 102–108 (1978).
[CrossRef]

J. R. V. Zaneveld, R. Bartz, J. C. Kitchen, “Reflective-tube absorption meter,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 124–136 (1990).
[CrossRef]

Berwald, J.

J. Berwald, D. Stramski, C. D. Mobley, D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr. 43, 564–576 (1998).
[CrossRef]

Boynton, G. C.

Breon, F. M.

P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Seze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 598–615 (1994).
[CrossRef]

Bricaud, A.

P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Seze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 598–615 (1994).
[CrossRef]

D. Stramski, A. Bricaud, A. Morel, “A database of single-particle optical properties,” presented at the Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998; Ocean Optics XIV CD ROM (Office of Naval Research, Washington, D.C., 1998).

Brown, O. B.

Buriez, J. C.

P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Seze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 598–615 (1994).
[CrossRef]

Cox, C.

Dana, D. R.

R. A. Maffione, D. R. Dana, “Recent measurements of the spectral backward-scattering coefficient in coastal waters,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 154–159 (1997).
[CrossRef]

Deschamps, P. Y.

P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Seze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 598–615 (1994).
[CrossRef]

Fry, E. S.

Gentili, B.

Gordon, H. R.

H. R. Gordon, “Contribution of Raman scattering to water-leaving radiance: a reexamination,” Appl. Opt. 38, 3166–3174 (1999).
[CrossRef]

H. R. Gordon, G. C. Boynton, “Radiance-irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: vertically stratified water bodies,” Appl. Opt. 37, 3886–3896 (1998).
[CrossRef]

H. R. Gordon, G. C. Boynton, “Radiance-irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: homogeneous waters,” Appl. Opt. 36, 2636–2641 (1997).
[CrossRef] [PubMed]

C. D. Mobley, B. Gentili, H. R. Gordon, J. Zhonghai, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing under-water light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

H. R. Gordon, “Sensitivity of radiative transfer to small-angle scattering in the ocean: a quantitative assessment,” Appl. Opt. 32, 7505–7511 (1993).
[CrossRef] [PubMed]

H. R. Gordon, “Absorption and scattering estimates from irradiance measurements: Monte Carlo simulations,” Limnol. Oceanogr. 36, 769–777 (1991).
[CrossRef]

H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relations between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef] [PubMed]

H. R. Gordon, W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975).
[CrossRef] [PubMed]

Hojerslev, N. K.

T. Aarup, N. Holt, N. K. Hojerslev, “Optical measurements in the North Sea–Baltic transition zone. III. Statistical analysis of bio-optical data from the Eastern North Sea, the Skagerrak and the Kattegat,” Continental Shelf Res. 16, 1355–1377 (1996).
[CrossRef]

Holt, N.

T. Aarup, N. Holt, N. K. Hojerslev, “Optical measurements in the North Sea–Baltic transition zone. III. Statistical analysis of bio-optical data from the Eastern North Sea, the Skagerrak and the Kattegat,” Continental Shelf Res. 16, 1355–1377 (1996).
[CrossRef]

Ishizaka, J.

M. Kishino, J. Ishizaka, H. Satoh, K. Kusaka, S. Saitoh, T. Miyoi, K. Kawasaki, “Optical characteristics of seawater in the North Pacific Ocean,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 173–178 (1997).
[CrossRef]

Jacobs, M. M.

Kattawar, G. W.

Kawasaki, K.

M. Kishino, J. Ishizaka, H. Satoh, K. Kusaka, S. Saitoh, T. Miyoi, K. Kawasaki, “Optical characteristics of seawater in the North Pacific Ocean,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 173–178 (1997).
[CrossRef]

Kiefer, D. A.

J. Berwald, D. Stramski, C. D. Mobley, D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr. 43, 564–576 (1998).
[CrossRef]

Kirk, J. T. O.

J. T. O. Kirk, “Estimation of the absorption and scattering coefficient of natural waters by use of underwater irradiance measurements,” Appl. Opt. 33, 3276–3278 (1994).
[CrossRef] [PubMed]

J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991).
[CrossRef]

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984).
[CrossRef]

J. T. O. Kirk, “Estimation of the scattering coefficient of natural waters using underwater irradiance measurements,” Aust. J. Mar. Freshwater Res. 32, 533–539 (1981).
[CrossRef]

Kishino, M.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

M. Kishino, J. Ishizaka, H. Satoh, K. Kusaka, S. Saitoh, T. Miyoi, K. Kawasaki, “Optical characteristics of seawater in the North Pacific Ocean,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 173–178 (1997).
[CrossRef]

Kitchen, J. C.

C. Moore, J. R. V. Zaneveld, J. C. Kitchen, “Preliminary results from an in situ spectral absorption meter,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 330–337 (1992).

J. R. V. Zaneveld, R. Bartz, J. C. Kitchen, “Reflective-tube absorption meter,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 124–136 (1990).
[CrossRef]

Kusaka, K.

M. Kishino, J. Ishizaka, H. Satoh, K. Kusaka, S. Saitoh, T. Miyoi, K. Kawasaki, “Optical characteristics of seawater in the North Pacific Ocean,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 173–178 (1997).
[CrossRef]

Leroy, M.

P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Seze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 598–615 (1994).
[CrossRef]

Loisel, H.

Maffione, R. A.

R. A. Maffione, D. R. Dana, “Recent measurements of the spectral backward-scattering coefficient in coastal waters,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 154–159 (1997).
[CrossRef]

Marshall, B. R.

McCluney, W. R.

Miyoi, T.

M. Kishino, J. Ishizaka, H. Satoh, K. Kusaka, S. Saitoh, T. Miyoi, K. Kawasaki, “Optical characteristics of seawater in the North Pacific Ocean,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 173–178 (1997).
[CrossRef]

Mobley, C. D.

J. Berwald, D. Stramski, C. D. Mobley, D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr. 43, 564–576 (1998).
[CrossRef]

C. D. Mobley, B. Gentili, H. R. Gordon, J. Zhonghai, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing under-water light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

C. D. Mobley, Hydrolight 4.0 User’s Guide (Sequoia Scientific, Mercer Island, Wash., 1998).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).

Moore, C.

C. Moore, J. R. V. Zaneveld, J. C. Kitchen, “Preliminary results from an in situ spectral absorption meter,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 330–337 (1992).

Morel, A.

A. Morel, H. Loisel, “Apparent optical properties of oceanic water: dependence on the molecular scattering contribution,” Appl. Opt. 37, 4765–4776 (1998).
[CrossRef]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996).
[CrossRef] [PubMed]

D. Antoine, J. M. Andre, A. Morel, “Ocean primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll,” Global Biogeochem. Cycles 10, 57–69 (1996).
[CrossRef]

C. D. Mobley, B. Gentili, H. R. Gordon, J. Zhonghai, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing under-water light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angles as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
[CrossRef] [PubMed]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

D. Stramski, A. Bricaud, A. Morel, “A database of single-particle optical properties,” presented at the Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998; Ocean Optics XIV CD ROM (Office of Naval Research, Washington, D.C., 1998).

Munk, W.

Okami, N.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Park, H.

R. Bartz, J. R. V. Zaneveld, H. Park, “A transmissometer for profiling and moored observations in water,” in Ocean Optics V, M. B. White, ed., Proc. SPIE160, 102–108 (1978).
[CrossRef]

Petzold, T.

R. Austin, T. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” Opt. Eng. 25, 471–479 (1986).
[CrossRef]

Petzold, T. J.

R. W. Austin, T. J. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 239–256.
[CrossRef]

T. J. Petzold, “Volume scattering functions for selected natural waters,” (Scripps Institution of Oceanography, La Jolla, Calif., 1972).

Podaire, A.

P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Seze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 598–615 (1994).
[CrossRef]

Pope, R. M.

Preisendorfer, R. W.

R. W. Preisendorfer, “Application of radiative transfer theory to light measurements in the sea,” Union Geod. Geophys. Monogr. 10, 11–30 (1961).

Prieur, L.

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Reinersman, P.

Saitoh, S.

M. Kishino, J. Ishizaka, H. Satoh, K. Kusaka, S. Saitoh, T. Miyoi, K. Kawasaki, “Optical characteristics of seawater in the North Pacific Ocean,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 173–178 (1997).
[CrossRef]

Sathyendranath, S.

Satoh, H.

M. Kishino, J. Ishizaka, H. Satoh, K. Kusaka, S. Saitoh, T. Miyoi, K. Kawasaki, “Optical characteristics of seawater in the North Pacific Ocean,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 173–178 (1997).
[CrossRef]

Seze, G.

P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Seze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 598–615 (1994).
[CrossRef]

Smith, R. C.

Sogandares, F. M.

Stamnes, K.

Stavn, R. H.

Stramski, D.

J. Berwald, D. Stramski, C. D. Mobley, D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr. 43, 564–576 (1998).
[CrossRef]

D. Stramski, A. Bricaud, A. Morel, “A database of single-particle optical properties,” presented at the Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998; Ocean Optics XIV CD ROM (Office of Naval Research, Washington, D.C., 1998).

Sugihara, S.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Vodacek, A.

Voss, K. J.

Waters, K. J.

K. J. Waters, “Effects of Raman scattering on the water-leaving radiance,” J. Geophys. Res. 100, 13,151–13,161 (1995).
[CrossRef]

Weidemann, A. D.

Zaneveld, J. R. V.

R. Bartz, J. R. V. Zaneveld, H. Park, “A transmissometer for profiling and moored observations in water,” in Ocean Optics V, M. B. White, ed., Proc. SPIE160, 102–108 (1978).
[CrossRef]

C. Moore, J. R. V. Zaneveld, J. C. Kitchen, “Preliminary results from an in situ spectral absorption meter,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 330–337 (1992).

J. R. V. Zaneveld, R. Bartz, J. C. Kitchen, “Reflective-tube absorption meter,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 124–136 (1990).
[CrossRef]

Zhonghai, J.

Appl. Opt.

H. R. Gordon, O. B. Brown, M. M. Jacobs, “Computed relations between the inherent and apparent optical properties of a flat homogeneous ocean,” Appl. Opt. 14, 417–427 (1975).
[CrossRef] [PubMed]

J. T. O. Kirk, “Estimation of the absorption and scattering coefficient of natural waters by use of underwater irradiance measurements,” Appl. Opt. 33, 3276–3278 (1994).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angles as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
[CrossRef] [PubMed]

H. R. Gordon, G. C. Boynton, “Radiance-irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: homogeneous waters,” Appl. Opt. 36, 2636–2641 (1997).
[CrossRef] [PubMed]

H. R. Gordon, G. C. Boynton, “Radiance-irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: vertically stratified water bodies,” Appl. Opt. 37, 3886–3896 (1998).
[CrossRef]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35, 4850–4862 (1996).
[CrossRef] [PubMed]

H. R. Gordon, W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14, 413–416 (1975).
[CrossRef] [PubMed]

A. Morel, H. Loisel, “Apparent optical properties of oceanic water: dependence on the molecular scattering contribution,” Appl. Opt. 37, 4765–4776 (1998).
[CrossRef]

B. R. Marshall, R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990).
[CrossRef] [PubMed]

H. R. Gordon, “Contribution of Raman scattering to water-leaving radiance: a reexamination,” Appl. Opt. 38, 3166–3174 (1999).
[CrossRef]

F. M. Sogandares, E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
[CrossRef]

R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

J. S. Bartlett, K. J. Voss, S. Sathyendranath, A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
[CrossRef]

C. D. Mobley, B. Gentili, H. R. Gordon, J. Zhonghai, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing under-water light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988).
[CrossRef] [PubMed]

H. R. Gordon, “Sensitivity of radiative transfer to small-angle scattering in the ocean: a quantitative assessment,” Appl. Opt. 32, 7505–7511 (1993).
[CrossRef] [PubMed]

Aust. J. Mar. Freshwater Res.

J. T. O. Kirk, “Estimation of the scattering coefficient of natural waters using underwater irradiance measurements,” Aust. J. Mar. Freshwater Res. 32, 533–539 (1981).
[CrossRef]

Continental Shelf Res.

T. Aarup, N. Holt, N. K. Hojerslev, “Optical measurements in the North Sea–Baltic transition zone. III. Statistical analysis of bio-optical data from the Eastern North Sea, the Skagerrak and the Kattegat,” Continental Shelf Res. 16, 1355–1377 (1996).
[CrossRef]

Global Biogeochem. Cycles

D. Antoine, J. M. Andre, A. Morel, “Ocean primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll,” Global Biogeochem. Cycles 10, 57–69 (1996).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

P. Y. Deschamps, F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, G. Seze, “The POLDER mission: instrument characteristics and scientific objectives,” IEEE Trans. Geosci. Remote Sens. 32, 598–615 (1994).
[CrossRef]

J. Geophys. Res.

K. J. Waters, “Effects of Raman scattering on the water-leaving radiance,” J. Geophys. Res. 100, 13,151–13,161 (1995).
[CrossRef]

J. Oceanogr. Soc. Jpn.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

J. Opt. Soc. Am.

Limnol. Oceanogr.

J. Berwald, D. Stramski, C. D. Mobley, D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr. 43, 564–576 (1998).
[CrossRef]

J. T. O. Kirk, “Volume scattering function, average cosines, and the underwater light field,” Limnol. Oceanogr. 36, 455–467 (1991).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

H. R. Gordon, “Absorption and scattering estimates from irradiance measurements: Monte Carlo simulations,” Limnol. Oceanogr. 36, 769–777 (1991).
[CrossRef]

J. T. O. Kirk, “Dependence of relationship between inherent and apparent optical properties of water on solar altitude,” Limnol. Oceanogr. 29, 350–356 (1984).
[CrossRef]

Opt. Eng.

R. Austin, T. Petzold, “Spectral dependence of the diffuse attenuation coefficient of light in ocean waters,” Opt. Eng. 25, 471–479 (1986).
[CrossRef]

Union Geod. Geophys. Monogr.

R. W. Preisendorfer, “Application of radiative transfer theory to light measurements in the sea,” Union Geod. Geophys. Monogr. 10, 11–30 (1961).

Other

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).

R. Bartz, J. R. V. Zaneveld, H. Park, “A transmissometer for profiling and moored observations in water,” in Ocean Optics V, M. B. White, ed., Proc. SPIE160, 102–108 (1978).
[CrossRef]

J. R. V. Zaneveld, R. Bartz, J. C. Kitchen, “Reflective-tube absorption meter,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 124–136 (1990).
[CrossRef]

C. Moore, J. R. V. Zaneveld, J. C. Kitchen, “Preliminary results from an in situ spectral absorption meter,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 330–337 (1992).

R. A. Maffione, D. R. Dana, “Recent measurements of the spectral backward-scattering coefficient in coastal waters,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 154–159 (1997).
[CrossRef]

Neither the ac-9 nor the Hydroscat-6 instrument provides direct measurements of the absorption a the backscattering bb coefficients. The determination of a from ac-9 measurement requires a correction for scattering error that may be difficult to estimate accurately. The estimation of bb from Hydroscat-6 requires the conversion of the backscatter signal measured for the scattering angle of ∼140° into the bb value.

R. W. Austin, T. J. Petzold, “The determination of the diffuse attenuation coefficient of sea water using the Coastal Zone Color Scanner,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 239–256.
[CrossRef]

M. Kishino, J. Ishizaka, H. Satoh, K. Kusaka, S. Saitoh, T. Miyoi, K. Kawasaki, “Optical characteristics of seawater in the North Pacific Ocean,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 173–178 (1997).
[CrossRef]

T. J. Petzold, “Volume scattering functions for selected natural waters,” (Scripps Institution of Oceanography, La Jolla, Calif., 1972).

C. D. Mobley, Hydrolight 4.0 User’s Guide (Sequoia Scientific, Mercer Island, Wash., 1998).

D. Stramski, A. Bricaud, A. Morel, “A database of single-particle optical properties,” presented at the Ocean Optics XIV Conference, Kailua-Kona, Hawaii, 10–13 November 1998; Ocean Optics XIV CD ROM (Office of Naval Research, Washington, D.C., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Relationship between b/ a on R e (0-)/[1 - R e (0-)] at several solar zenith angles θ0 and values of η. The circles represent results of the radiative transfer simulations, and the solid lines are the least-squares linear regressions. For each regression the determination coefficient r 2 is greater than 0.99.

Fig. 2
Fig. 2

Changes in the h function with η for several values of θ0 ranging from 0° to 75° at 15° intervals.

Fig. 3
Fig. 3

Variation of with μ w . The circles represent the values obtained from radiative transfer simulations, and the curve was calculated with Eq. (10).

Fig. 4
Fig. 4

Relationship between b b /〈K d 1 and R e (0-) for two extreme values of η, as indicated. Each figure corresponds to a different solar zenith angle θ0, as indicated.

Fig. 5
Fig. 5

Comparison of errors (in percent) in the values of a, b, and b b estimated from our model with (left) no correction for Raman scattering and with (right) the correction for Raman scattering (see text for details about the calculations of errors). The errors are plotted as a function of chlorophyll concentration Chl for the three selected wavelengths, 440, 550, and 660 nm, as indicated. The circles indicate the errors for the absorption coefficient; the squares, those for the scattering coefficient; the triangles, those for the backscattering coefficient.

Fig. 6
Fig. 6

Comparison of the average particle-scattering phase function obtained from Petzold measurements32 with the calculated phase functions representing assemblages of low-refractive-index particles (detritus) and high-refractive-index particles (minerals). ψ is the scattering angle.

Fig. 7
Fig. 7

Effects of the use of mineral- and detrital-scattering phase functions on the estimation of a, b, and b b from our model. The percent errors in the estimated values of the absorption coefficient (circles), the scattering coefficient (squares), and the backscattering coefficient (triangles) are plotted as a function of chlorophyll concentration Chl for a wavelength λ = 550 nm. For comparison, the errors obtained with the use of the Petzold phase function are also shown.

Fig. 8
Fig. 8

Schematic diagram summarizing the estimation of absorption coefficient a, scattering coefficient b, and backscattering coefficient b b from our model based on the attenuation coefficient for downwelling irradiance, 〈K d 1, and the irradiance reflectance, R e (0-). This schematic applies to a given solar zenith angle.

Tables (2)

Tables Icon

Table 1 Notation Used in This Paper

Tables Icon

Table 2 Average and Maximum Errors (in percent) for the IOP Estimation from the Model

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

ω0=ba+b=b/a1+b/a.
βψ¯=ηβwψ¯+1-ηβpψ¯,
η=bwbw+bp=bwb
b/a=103Rezm1-Rezm.
ba=gη, μwRe0-1-Re0-,
Kd1=aμw1+ba Γη, μw0.5,
Γη, μw=γ1+γ2η+γ3+γ4ημw.
a=μwKd11+hη, μwRe0-1-Re0-0.5,
hη, μw=Kd1/aμw2-1Re0-1-Re0-.
h¯μw=2.54-6.54μw+19.89μw2,
a=μwKd11+h¯μwRe0-1-Re0-0.5.
gη, μw=10.0215-0.0149μw+0.1652-0.0358μwη.
b=a Re0-1-Re0--bw0.165-0.0358μw0.0215-0.0149μw.
b=aKd1a μw2-1-bw2.0303μw-0.30050.00054+0.1183μw,
bb=1D0 Kd i=13 riRe1i,
logbb/Kd1=α+δ logRe0-.
bb=Kd1 10αRe0-δ,
α=-0.83+5.34η-12.26η2+μw1.013-4.124η+8.088η2,
δ=0.871+0.40η-1.83η2.
R0-=Re0-+ΔR0-,
κ=R0--ΔR0-R0-.
Re0-=κR0-.
errIOP%=1528j=1528|IOPmodelj-IOPtruej|IOPtruej×100,

Metrics