Abstract

An encrypted database interfaced with an ultrafast secure data communication system using spatial-temporal converters is proposed. The original spatial signal is optically encrypted, and the encrypted signal is holographically stored in a storage medium such as photorefractive materials. The spatially encrypted signal is sampled to avoid the overlap of each datum at the receiver. The sampled data are converted into a temporal signal to transmit the information through an optical fiber. At the receiver the temporal signal is converted back into the spatially encrypted signal. Retrieval of the original data can be achieved when the correct phase key is used in the decryption system. We developed an expression for encrypted output and decrypted data. We numerically evaluate the effect of sampling the spatially encrypted signal on the quality of the decrypted data.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-Y. Li, Y. Qiao, D. Psaltis, “Optical neural network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993).
    [CrossRef] [PubMed]
  2. C. L. Wilson, C. I. Wilson, E. G. Paek, “Combined optical neural network fingerprint matching,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds., Proc. SPIE3073, 373–382 (1997).
    [CrossRef]
  3. B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
    [CrossRef]
  4. P. Réfrégier, B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [CrossRef] [PubMed]
  5. H. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
    [CrossRef] [PubMed]
  6. F. Goudail, F. Bollaro, B. Javidi, P. Réfrégier, “Influence of a perturbation in a double phase-encoding system,” J. Opt. Soc. Am. A 15, 2629–2638 (1998).
    [CrossRef]
  7. N. Yoshikawa, M. Itoh, T. Yatagai, “Binary computer-generated holograms for security applications from a synthetic double-exposure method by electron-beam lithography,” Opt. Lett. 23, 1483–1485 (1998).
    [CrossRef]
  8. O. Matoba, B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).
    [CrossRef]
  9. G. Unnikrishnan, J. Joseph, K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181–8186 (1998).
    [CrossRef]
  10. Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–114 (1990).
    [CrossRef]
  11. A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
    [CrossRef]
  12. A. W. Weiner, J. P. Heritage, J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302 (1988).
    [CrossRef] [PubMed]
  13. M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Partori, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664–666 (1994).
    [CrossRef] [PubMed]
  14. P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P. K. L. Yu, Y. Fainman, “All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
    [CrossRef] [PubMed]
  15. D. M. Marom, P.-C. Sun, Y. Fainman, “Analysis of spatial-temporal converters for all-optical communication links,” Appl. Opt. 37, 2858–2868 (1998).
    [CrossRef]
  16. D. M. Marom, D. Panasenko, P.-C. Sun, Y. Fainman, “Spatial-temporal wave mixing for space-time conversion,” Opt. Lett. 24, 563–565 (1999).
    [CrossRef]
  17. T. Konishi, Y. Ichioka, “Ultrafast image transmission by optical time-to-two-dimensional-space-to-time-two-dimensional-space conversion,” J. Opt. Soc. Am. A 16, 1076–1088 (1999).
    [CrossRef]
  18. L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

1999 (3)

1998 (4)

1995 (3)

1994 (2)

M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Partori, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664–666 (1994).
[CrossRef] [PubMed]

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

1993 (1)

1992 (1)

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

1990 (1)

Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–114 (1990).
[CrossRef]

1988 (1)

Bashaw, M. C.

Bollaro, F.

Chang, W. S. C.

Chiu, T. H.

Fainman, Y.

Goudail, F.

Grunnet-Jepsen, A.

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

Heanue, H. F.

Heritage, J. P.

Hesselink, L.

Horner, J. L.

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Ichioka, Y.

Itoh, M.

Javidi, B.

Joseph, J.

Konishi, T.

Leaird, D. E.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

Li, H.-Y.

Li, M.

Marom, D. M.

Matoba, O.

Mazurenko, Y. T.

Nuss, M. C.

Paek, E. G.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

C. L. Wilson, C. I. Wilson, E. G. Paek, “Combined optical neural network fingerprint matching,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds., Proc. SPIE3073, 373–382 (1997).
[CrossRef]

Panasenko, D.

Partori, A.

Psaltis, D.

Qiao, Y.

Réfrégier, P.

Reitze, D. H.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

Salehi, J. A.

Singh, K.

Solymar, L.

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

Sun, P. C.

Sun, P.-C.

Unnikrishnan, G.

Webb, D. J.

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

Weiner, A. M.

M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Partori, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664–666 (1994).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

Weiner, A. W.

Wilson, C. I.

C. L. Wilson, C. I. Wilson, E. G. Paek, “Combined optical neural network fingerprint matching,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds., Proc. SPIE3073, 373–382 (1997).
[CrossRef]

Wilson, C. L.

C. L. Wilson, C. I. Wilson, E. G. Paek, “Combined optical neural network fingerprint matching,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds., Proc. SPIE3073, 373–382 (1997).
[CrossRef]

Yatagai, T.

Yoshikawa, N.

Yu, P. K. L.

Appl. Opt. (4)

Appl. Phys. B (1)

Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–114 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

B. Javidi, J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Opt. Lett. (7)

Other (2)

C. L. Wilson, C. I. Wilson, E. G. Paek, “Combined optical neural network fingerprint matching,” in Optical Pattern Recognition VIII, D. P. Casasent, T. Chao, eds., Proc. SPIE3073, 373–382 (1997).
[CrossRef]

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, Oxford, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Illustration of the proposed encrypted optical memory system using spatial-temporal converters and double-random phase encoding.

Fig. 2
Fig. 2

Encrypted memory system: (a) recording and (b) readout.

Fig. 3
Fig. 3

Transmitter using space-to-time converter. L1 and L2 are Fourier-transform lenses.

Fig. 4
Fig. 4

Receiver using time-to-space converter. L3 is a Fourier-transform lens.

Fig. 5
Fig. 5

Decryption system.

Fig. 6
Fig. 6

Mean-squared errors between original and reconstructed data and between original and reconstructed data with low-pass filter as a function of the sampling interval, Δ.

Fig. 7
Fig. 7

Example of original digital data, encrypted data, and reconstructed data. (a) The original digital data and the encrypted data and (b) the original digital data and the reconstructed data when the sampling interval, Δ, is 2. The reconstructed data are low-pass filtered.

Fig. 8
Fig. 8

Bit error rate of binarized reconstructed data as a function of the sampling interval, Δ.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

Eiν=GiνHiν,
Giν=Fgixexp-jnix.
ϕν=iM |Eiν+Riν|2,
rix=gixexp-jnix  Fexp-jhiν,
st=pt-t0expjω0t,
Sω=Pω-ω0exp-jω-ω0t0,
ψ1x; ω=exp-j ω-ω0c αxwx,
ψ2η; ω=Wωη2πcf+ω-ω02πc α,
η=-fα ω-ω0ω.
rix=n rixδx-nΔ=n Aixexpjϕixδx-nΔ=n AinΔexpjϕinΔδx-nΔ,
Riη=n AinΔexpjϕinΔexp-j nΔωcf η,
tiη=n AinΔexpjϕinΔexp-j nΔωcf η,
ψ3η; ω=ψ2η; ωtiη=W ωη2πcf+ω-ω02πc α×n AinΔ×expjϕinΔexp-j nΔωcf η.
ψ4X; ω=n AinΔexpjϕinΔexpj ω-ω0c×αX+nΔ ωωw-X-nΔ ωω.
ψ5X; ω=n AinΔexpjϕinΔ×expj αnΔcω-ω0ωωw×-X-nΔ ωω,
oiX, t=- ψ5X; ωSωexp-jωtdω=n AinΔexpjϕinΔ×w-X-nΔ ωω0pt-t0+nδtexpjω0t,
1ω=1ω0+Δω=1ω011+Δω/ω01ω01-Δωω01ω0,
srt=pt-t0expjω0t.
Iiη, ω=OiωWωη2πcf+ω-ω02πc α+SrωWωη2πcf+ω-ω02πc α2=|Oiω|2Wωη2πcf+ω-ω02πc α2+|Srω|2Wωη2πcf+ω-ω02πc α2+Oi * ωSrωWωη2πcf+ω-ω02πc α2+OiωSr * ωWωη2πcf+ω-ω02πc α2,
Oiω=n AinΔexpjϕinΔPω-ω0×exp-jω-ω0t0-nδt,
Srω=Pω-ω0exp-jω-ω0t0.
ξix=Fn AinΔexp-jϕinΔ|Pω-ω0|2×exp-jω-ω0nδt.
ξix=-n AinΔexp-jϕinΔ|P-ω0η/fα|2×expjω0ηnδt/fαexp-j2πxη/λfdη=n AinΔexp-jϕinΔ×exp-α21/λx+nΔ/λ24ω02τ2,
ξix=ξixδx-nΔ=n AinΔexp-jϕinΔδx-nΔ=n AinΔexpjϕinΔδx-nΔ*.
Ψiν=Gi*νHi*ν  expj 2πλf nΔνHiν,
Ioutx=n gixexp-jnixF * exp-jhiνδx-nΔFexp-jhiν.
e=Egx-m×gΔx|2,

Metrics