Abstract

Model-based image processing techniques have been proposed as a way to increase the resolution of optical microscopes. Here a model based on the microscope’s point-spread function is analyzed, and the resolution limits achieved with a proposed goodness-of-fit criterion are quantified. Several experiments were performed to evaluate the possibilities and limitations of this method: (a) experiments with an ideal (diffraction-limited) microscope, (b) experiments with simulated dots and a real microscope, and (c) experiments with real dots acquired with a real microscope. The results show that a threefold increase over classical resolution (e.g., Rayleigh) is possible. These results can be affected by model misspecifications, whereas model corruption, as seen in the effect of Poisson noise, seems to be unimportant. This research can be considered to be preliminary with the final goal being the accurate measurement of various cytogenetic properties, such as gene distributions, in labeled preparations.

© 2000 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low power super resolution fluorescence microscopy by lifetime modification and image reconstruction

Richard J. Marsh, Siân Culley, and Angus J. Bain
Opt. Express 22(10) 12327-12338 (2014)

Multiple-objective microscopy with three-dimensional resolution near 100  nm and a long working distance

O. Haeberlé, C. Xu, A. Dieterlen, and S. Jacquey
Opt. Lett. 26(21) 1684-1686 (2001)

Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes

D. R. Sandison, D. W. Piston, R. M. Williams, and W. W. Webb
Appl. Opt. 34(19) 3576-3588 (1995)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription