Abstract

A simple technique for visualizing two-dimensional traveling surface acoustic wave (SAW) phenomena in real time was developed. The technique requires illumination of a SAW carrying substrate with a collimated, sinusoidally amplitude-modulated laser beam. Though at first the technique may appear to be stroboscopic in nature, it in fact has its foundations in spatiotemporal correlation theory. It is shown that if the modulation frequency of the illumination beam is equal to, or an integer fraction of, the SAW frequency (i.e., if they are temporally correlated) then, after simple spatial filtering, high-visibility stationary fringes can be produced. In fact, it is shown that a maximum fringe visibility of nearly 60% can be achieved. It is believed that this is the highest visibility yet reported for similar SAW visualization techniques.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription