Abstract

Digital holograms are recorded of biological tissues by use of a Q-switched double-pulsed ruby laser. An image-plane digital holography setup is used with a CCD camera for capturing two holograms with a short time separation (20–800 µs). Subtraction of the phase distribution in two digital holograms yield a fringe phase map that shows the change in deformation of the tissue surface between the recordings. Experiments are performed on tissue from a pig that was excited by a short-shock pulse and on a human hand that was excited by sinusoidal stimulation. Results when the object is imaged through an endoscope are also presented. The technique could be an approach for measuring parameters like elasticity on biological tissues.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Pryputniewicz, “Pulsed laser holography in studies of bone motions and deformations,” Opt. Eng. 24(5) , 832–839 (1985).
  2. H. Wos, L. Svensson, S. Norlander, “Implementation of double-pulsed holography in evaluation of whole-body vibration,” Ergonomics 34(11) , 1357–1364 (1991).
    [CrossRef]
  3. H. Hong, D. Sheffer, W. Loughry, “Detection of breast lesions by holographic interferometry,” J. Biomed. Opt. 4(03) , 368–375 (1999).
    [CrossRef]
  4. J. Woisetschläger, D. B. Sheffer, C. W. Loughry, K. Somasundaram, S. K. Chawla, P. J. Wesolowski, “Phase-shifting holographic interferometry for breast cancer detection,” Appl. Opt. 33, 5011–5015 (1994).
    [CrossRef] [PubMed]
  5. G. von Bally, B. Kemper, A. Merker, S. Lai, “A new dynamic endoscopic holographic interferometer for in-vivo medical imaging metrology,” in Eighteenth Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, eds., Proc. SPIE3749, 393–394 (1999).
  6. A. Fernadéz, A. J. Moore, C. Pérez-López, A. F. Doval, J. Blanco-García, “Study of transient deformations with pulsed TV holography: application to crack detection,” Appl. Opt. 36, 2058–2065 (1997).
    [CrossRef]
  7. C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).
  8. R. Spooren, “Double-pulse subtraction TV holography,” Opt. Eng. 31, 1000–1007 (1992).
    [CrossRef]
  9. G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997).
    [CrossRef]
  10. P. Gren, S. Schedin, X. Li, “Tomographic reconstruction of transient acoustic fields recorded by pulsed TV holography,” Appl. Opt. 37, 834–840 (1998).
    [CrossRef]
  11. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  12. S. Schedin, G. Pedrini, H. J. Tiziani, F. Mendoza Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
    [CrossRef]

1999 (2)

H. Hong, D. Sheffer, W. Loughry, “Detection of breast lesions by holographic interferometry,” J. Biomed. Opt. 4(03) , 368–375 (1999).
[CrossRef]

S. Schedin, G. Pedrini, H. J. Tiziani, F. Mendoza Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

1998 (1)

1997 (2)

1994 (1)

1992 (1)

R. Spooren, “Double-pulse subtraction TV holography,” Opt. Eng. 31, 1000–1007 (1992).
[CrossRef]

1991 (1)

H. Wos, L. Svensson, S. Norlander, “Implementation of double-pulsed holography in evaluation of whole-body vibration,” Ergonomics 34(11) , 1357–1364 (1991).
[CrossRef]

1985 (1)

R. J. Pryputniewicz, “Pulsed laser holography in studies of bone motions and deformations,” Opt. Eng. 24(5) , 832–839 (1985).

1982 (1)

Blanco-García, J.

Chawla, S. K.

Doval, A. F.

Fernadéz, A.

Gren, P.

Hong, H.

H. Hong, D. Sheffer, W. Loughry, “Detection of breast lesions by holographic interferometry,” J. Biomed. Opt. 4(03) , 368–375 (1999).
[CrossRef]

Ina, H.

Kemper, B.

G. von Bally, B. Kemper, A. Merker, S. Lai, “A new dynamic endoscopic holographic interferometer for in-vivo medical imaging metrology,” in Eighteenth Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, eds., Proc. SPIE3749, 393–394 (1999).

Kobayashi, S.

Lai, S.

G. von Bally, B. Kemper, A. Merker, S. Lai, “A new dynamic endoscopic holographic interferometer for in-vivo medical imaging metrology,” in Eighteenth Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, eds., Proc. SPIE3749, 393–394 (1999).

Li, X.

Loughry, C. W.

Loughry, W.

H. Hong, D. Sheffer, W. Loughry, “Detection of breast lesions by holographic interferometry,” J. Biomed. Opt. 4(03) , 368–375 (1999).
[CrossRef]

Mendoza Santoyo, F.

S. Schedin, G. Pedrini, H. J. Tiziani, F. Mendoza Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

Merker, A.

G. von Bally, B. Kemper, A. Merker, S. Lai, “A new dynamic endoscopic holographic interferometer for in-vivo medical imaging metrology,” in Eighteenth Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, eds., Proc. SPIE3749, 393–394 (1999).

Moore, A. J.

Norlander, S.

H. Wos, L. Svensson, S. Norlander, “Implementation of double-pulsed holography in evaluation of whole-body vibration,” Ergonomics 34(11) , 1357–1364 (1991).
[CrossRef]

Pedrini, G.

S. Schedin, G. Pedrini, H. J. Tiziani, F. Mendoza Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

Pérez-López, C.

Pryputniewicz, R. J.

R. J. Pryputniewicz, “Pulsed laser holography in studies of bone motions and deformations,” Opt. Eng. 24(5) , 832–839 (1985).

Schedin, S.

S. Schedin, G. Pedrini, H. J. Tiziani, F. Mendoza Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

P. Gren, S. Schedin, X. Li, “Tomographic reconstruction of transient acoustic fields recorded by pulsed TV holography,” Appl. Opt. 37, 834–840 (1998).
[CrossRef]

Sheffer, D.

H. Hong, D. Sheffer, W. Loughry, “Detection of breast lesions by holographic interferometry,” J. Biomed. Opt. 4(03) , 368–375 (1999).
[CrossRef]

Sheffer, D. B.

Somasundaram, K.

Spooren, R.

R. Spooren, “Double-pulse subtraction TV holography,” Opt. Eng. 31, 1000–1007 (1992).
[CrossRef]

Svensson, L.

H. Wos, L. Svensson, S. Norlander, “Implementation of double-pulsed holography in evaluation of whole-body vibration,” Ergonomics 34(11) , 1357–1364 (1991).
[CrossRef]

Takeda, M.

Tiziani, H. J.

S. Schedin, G. Pedrini, H. J. Tiziani, F. Mendoza Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).

von Bally, G.

G. von Bally, B. Kemper, A. Merker, S. Lai, “A new dynamic endoscopic holographic interferometer for in-vivo medical imaging metrology,” in Eighteenth Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, eds., Proc. SPIE3749, 393–394 (1999).

Wesolowski, P. J.

Woisetschläger, J.

Wos, H.

H. Wos, L. Svensson, S. Norlander, “Implementation of double-pulsed holography in evaluation of whole-body vibration,” Ergonomics 34(11) , 1357–1364 (1991).
[CrossRef]

Zou, Y.

G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

Appl. Opt. (3)

Ergonomics (1)

H. Wos, L. Svensson, S. Norlander, “Implementation of double-pulsed holography in evaluation of whole-body vibration,” Ergonomics 34(11) , 1357–1364 (1991).
[CrossRef]

J. Biomed. Opt. (1)

H. Hong, D. Sheffer, W. Loughry, “Detection of breast lesions by holographic interferometry,” J. Biomed. Opt. 4(03) , 368–375 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

S. Schedin, G. Pedrini, H. J. Tiziani, F. Mendoza Santoyo, “All-fibre pulsed digital holography,” Opt. Commun. 165, 183–188 (1999).
[CrossRef]

Opt. Eng. (2)

R. J. Pryputniewicz, “Pulsed laser holography in studies of bone motions and deformations,” Opt. Eng. 24(5) , 832–839 (1985).

R. Spooren, “Double-pulse subtraction TV holography,” Opt. Eng. 31, 1000–1007 (1992).
[CrossRef]

Opt. Lasers Eng. (1)

G. Pedrini, H. J. Tiziani, Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199–219 (1997).
[CrossRef]

Other (2)

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979).

G. von Bally, B. Kemper, A. Merker, S. Lai, “A new dynamic endoscopic holographic interferometer for in-vivo medical imaging metrology,” in Eighteenth Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenther, T. Asakura, eds., Proc. SPIE3749, 393–394 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup: AP, aperture; BS, beam splitter; L, lens; M, mirror; NL, negative lens; R, reference beam.

Fig. 2
Fig. 2

White-light image of the test tissue from the front leg of a pig.

Fig. 3
Fig. 3

Intact pig tissue deformation caused by shock excitation: (a) qualitative interferogram (subtraction of the complex amplitudes of the two holograms) and (b) quantitative phase map (subtraction of the phase distributions of the two holograms).

Fig. 4
Fig. 4

Metal rod with a diameter of 2.5 mm inserted behind the pig tissue surface and the resultant phase map showing deformation caused by shock excitation.

Fig. 5
Fig. 5

Shock excitation at the center of a dehydrated quadratic area (15 mm × 15 mm) of the pig tissue.

Fig. 6
Fig. 6

(a) Experimental setup that uses a rigid endoscope to produce an image of the object. An optical fiber is used for object illumination. AP, aperture; BS, beam splitter; L, lens; R, reference beam. (b) Phase map that results from shock excitation of pig tissue, as obtained with the arrangement shown in (a).

Fig. 7
Fig. 7

Phase map showing vibration in a human hand. A sinusoidal excitation (of a frequency of 400 Hz) was applied to the top of the middle finger.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

IxH, yH=|RxH, yH|2+|UxH, yH|2+RxH, yHU*xH, yH+R*xH, yHUxH, yH,

Metrics