Abstract

Results of simulations of the diffraction of a laser beam by a small blood vessel imbedded in scattering tissue are presented. The form of the spectra of biospeckle intensity fluctuations is analyzed. The Doppler shift of intensity fluctuations of scattered light is investigated as a function of the laser beam radius, the radius of the blood vessel, the depth of the vessel in the tissue, and the scattering characteristics of flowing blood. A formula that serves as the basis for a method of absolute measurements of blood-flow velocity is derived.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Riva, B. Ross, G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol 11, 936–944 (1972).
    [PubMed]
  2. H. Mishina, T. Asakura, S. Nagai, “A laser Doppler microscope,” Opt. Commun. 11, 99–102 (1974).
    [CrossRef]
  3. B. A. Levenko, A. V. Priezzhev, S. G. Proskurin, N. B. Savchenko, “Laser Doppler microscopy of biological objects with various optical properties,” Bull. Russ. Acad. Sci. Phys. 59, 1070–1075 (1995).
  4. Y. Aizu, T. Asakura, A. Kujimn, “Compensation of eye movements in retinal speckle flowmetry using flexible correlation analysis based on the specific variance,” J. Biomed. Opt. 3, 227–236 (1998).
    [CrossRef] [PubMed]
  5. Y. Aizu, K. Ogino, T. Sugita, T. Yamamoto, N. Takai, T. Asakura, “Evaluation of blood flow at ocular fundus by using laser speckle,” Appl. Opt. 31, 3020–3029 (1992).
    [CrossRef] [PubMed]
  6. C. E. Riva, J. E. Grunwald, S. H. Sinclair, K. O’Keefe, “Fundus camera based retinal LDV,” Appl. Opt. 20, 117–120 (1981).
    [CrossRef] [PubMed]
  7. G. T. Feke, A. Yoshida, C. L. Schepens, “Laser based instruments for occular blood flow assessment,” J. Biomed. Opt. 3, 415–422 (1998).
    [CrossRef] [PubMed]
  8. Y. Aizu, T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood flow,” Opt. Laser Technol. 23, 205–219 (1991).
    [CrossRef]
  9. Y. Aizu, H. Ambar, T. Yamamoto, T. Asakura, “Measurements of flow velocity in a microscopic region using dynamic laser speckles based on the photon correlation,” Opt. Commun. 72, 269–273 (1989).
    [CrossRef]
  10. S. S. Ul’yanov, “The peculiarities of manifestation of the Doppler effect at the scattering of focused Gaussian beams on moving random inhomogeneous media,” Bull. Russ. Acad. Sci. Phys. 59, 133–137 (1995).
  11. S. S. Ul’yanov, “A new type of manifestation of Doppler effect. “An application to blood and lymph flow measurements,” Opt. Eng. 34, 2850–2855 (1995).
    [CrossRef]
  12. S. S. Ulyanov, “Speckled speckles statistics with a small number of scatterers, an implication for blood flow measurements,” J. Biomed. Opt. 3, 237–245 (1998).
    [CrossRef] [PubMed]
  13. S. S. Ul’yanov, “Dynamic of statistically inhomogeneous speckles: a new type of manifestation of Doppler effect,” Opt. Lett. 20, 1313–1315 (1995).
    [CrossRef]
  14. J. D. Briers, S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
    [CrossRef] [PubMed]
  15. J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13, 345–350 (1996).
    [CrossRef]
  16. Y. Aizu, T. Asakura, “Coherent optical techniques for diagnostics of retinal blood flow,” J. Biomed. Opt. 4, 61–75 (1999).
    [CrossRef] [PubMed]
  17. T. Eiju, M. Nagai, K. Matsuda, J. Ohtsubo, K. Homma, K. Shimizu, “Microscopic laser Doppler velocimeter for blood velocity measurements,” Opt. Eng. 32, 15–20 (1993).
    [CrossRef]
  18. W. Ruetten, T. Gellekum, K. Jessen, “Investigation of laser Doppler techniques using the Monte Carlo method,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 277–288 (1995).
    [CrossRef]
  19. A. Perlin, T.-K. Hung, “Flow development of a train of particles in capillaries,” J. Eng. Mech. Div. EM1, 49–66 (1978).
  20. A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
    [CrossRef] [PubMed]
  21. A. Kiele, R. Hibst, “A new optimal wavelength for treatment of port wine stains,” Phys. Med. Biol. 40, 1559–1576 (1995).
    [CrossRef]
  22. V. V. Tuchin, S. R. Utz, I. V. Yaroslavsky, “Tissue optics, light propagation, and spectroscopy,” Opt. Eng. 33, 3178–3188 (1994).
    [CrossRef]
  23. A. D. Aczel, Complete Business Statistics (Irwin, Homewood, Ill., 1989).
  24. J. S. Bendat, A. G. Piersol, Random Data. Analysis and Measurements Procedures (Wiley, New York, 1986).
  25. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Laser Doppler blood flowmetry using two waveguides: Monte Carlo simulations and measurements,” Appl. Opt. 33, 3549–3558 (1994).
    [CrossRef] [PubMed]
  26. F. F. de Mul, W. Steenbergen, T. Vonck, J. Greve, “Coherence effects in modeling laser-Doppler perfusion flowmetry,” in CIS Selected Papers: Coherence-Domain Methods in Biomedical Optics, V. V. Tuchin, ed., Proc. SPIE2732, 123–133 (1996).
  27. S. S. Ulyanov, V. V. Tuchin, A. A. Bednov, G. E. Brill, E. I. Zakharova, “Speckle-interferometric method in application to the blood and lymph flow monitoring in microvessels,” Lasers Med. Sci. 12, 31–41 (1997).
    [CrossRef]
  28. A. A. Bednov, S. S. Ul’yanov, V. V. Tuchin, G. E. Brill, E. I. Zakharova, “Investigations of dynamics of lymph flow by means of speckle interferometric method,” Appl. Non-linear Dyn. 4, 42–51 (1996).
  29. A. P. Shepherd, P. A. Oberg, eds., Laser Doppler Blood Flowmetry, (Kluwer Academic, Boston, 1989).
  30. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, “Analytical calculations and Monte Carlo simulations of laser Doppler flowmetry using a cubic lattice model,” Appl. Opt. 31, 3061–3067 (1992).
    [CrossRef] [PubMed]
  31. P. Yu Starukhin, S. S. Ulyanov, V. V. Tuchin, “Monte-Carlo simulation of Doppler shift for laser light propagation in a highly scattering medium,” in Nonlinear Dynamics and Structures in Biology and Medicine: Optical and Laser Technologies: International Workshop, V. V. Tuchin, ed., Proc. SPIE3053, 42–47 (1997).
    [CrossRef]
  32. L. Stevens, Applied Multivariate Statistics for the Social Sciences (Erlbaum, Hillsdale, N.J., 1986).

1999 (2)

Y. Aizu, T. Asakura, “Coherent optical techniques for diagnostics of retinal blood flow,” J. Biomed. Opt. 4, 61–75 (1999).
[CrossRef] [PubMed]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[CrossRef] [PubMed]

1998 (3)

S. S. Ulyanov, “Speckled speckles statistics with a small number of scatterers, an implication for blood flow measurements,” J. Biomed. Opt. 3, 237–245 (1998).
[CrossRef] [PubMed]

Y. Aizu, T. Asakura, A. Kujimn, “Compensation of eye movements in retinal speckle flowmetry using flexible correlation analysis based on the specific variance,” J. Biomed. Opt. 3, 227–236 (1998).
[CrossRef] [PubMed]

G. T. Feke, A. Yoshida, C. L. Schepens, “Laser based instruments for occular blood flow assessment,” J. Biomed. Opt. 3, 415–422 (1998).
[CrossRef] [PubMed]

1997 (1)

S. S. Ulyanov, V. V. Tuchin, A. A. Bednov, G. E. Brill, E. I. Zakharova, “Speckle-interferometric method in application to the blood and lymph flow monitoring in microvessels,” Lasers Med. Sci. 12, 31–41 (1997).
[CrossRef]

1996 (3)

A. A. Bednov, S. S. Ul’yanov, V. V. Tuchin, G. E. Brill, E. I. Zakharova, “Investigations of dynamics of lymph flow by means of speckle interferometric method,” Appl. Non-linear Dyn. 4, 42–51 (1996).

J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13, 345–350 (1996).
[CrossRef]

J. D. Briers, S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef] [PubMed]

1995 (5)

A. Kiele, R. Hibst, “A new optimal wavelength for treatment of port wine stains,” Phys. Med. Biol. 40, 1559–1576 (1995).
[CrossRef]

S. S. Ul’yanov, “Dynamic of statistically inhomogeneous speckles: a new type of manifestation of Doppler effect,” Opt. Lett. 20, 1313–1315 (1995).
[CrossRef]

B. A. Levenko, A. V. Priezzhev, S. G. Proskurin, N. B. Savchenko, “Laser Doppler microscopy of biological objects with various optical properties,” Bull. Russ. Acad. Sci. Phys. 59, 1070–1075 (1995).

S. S. Ul’yanov, “The peculiarities of manifestation of the Doppler effect at the scattering of focused Gaussian beams on moving random inhomogeneous media,” Bull. Russ. Acad. Sci. Phys. 59, 133–137 (1995).

S. S. Ul’yanov, “A new type of manifestation of Doppler effect. “An application to blood and lymph flow measurements,” Opt. Eng. 34, 2850–2855 (1995).
[CrossRef]

1994 (2)

1993 (1)

T. Eiju, M. Nagai, K. Matsuda, J. Ohtsubo, K. Homma, K. Shimizu, “Microscopic laser Doppler velocimeter for blood velocity measurements,” Opt. Eng. 32, 15–20 (1993).
[CrossRef]

1992 (2)

1991 (1)

Y. Aizu, T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood flow,” Opt. Laser Technol. 23, 205–219 (1991).
[CrossRef]

1989 (1)

Y. Aizu, H. Ambar, T. Yamamoto, T. Asakura, “Measurements of flow velocity in a microscopic region using dynamic laser speckles based on the photon correlation,” Opt. Commun. 72, 269–273 (1989).
[CrossRef]

1981 (1)

1978 (1)

A. Perlin, T.-K. Hung, “Flow development of a train of particles in capillaries,” J. Eng. Mech. Div. EM1, 49–66 (1978).

1974 (1)

H. Mishina, T. Asakura, S. Nagai, “A laser Doppler microscope,” Opt. Commun. 11, 99–102 (1974).
[CrossRef]

1972 (1)

C. E. Riva, B. Ross, G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol 11, 936–944 (1972).
[PubMed]

Aarnoudse, J. G.

Aczel, A. D.

A. D. Aczel, Complete Business Statistics (Irwin, Homewood, Ill., 1989).

Aizu, Y.

Y. Aizu, T. Asakura, “Coherent optical techniques for diagnostics of retinal blood flow,” J. Biomed. Opt. 4, 61–75 (1999).
[CrossRef] [PubMed]

Y. Aizu, T. Asakura, A. Kujimn, “Compensation of eye movements in retinal speckle flowmetry using flexible correlation analysis based on the specific variance,” J. Biomed. Opt. 3, 227–236 (1998).
[CrossRef] [PubMed]

Y. Aizu, K. Ogino, T. Sugita, T. Yamamoto, N. Takai, T. Asakura, “Evaluation of blood flow at ocular fundus by using laser speckle,” Appl. Opt. 31, 3020–3029 (1992).
[CrossRef] [PubMed]

Y. Aizu, T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood flow,” Opt. Laser Technol. 23, 205–219 (1991).
[CrossRef]

Y. Aizu, H. Ambar, T. Yamamoto, T. Asakura, “Measurements of flow velocity in a microscopic region using dynamic laser speckles based on the photon correlation,” Opt. Commun. 72, 269–273 (1989).
[CrossRef]

Ambar, H.

Y. Aizu, H. Ambar, T. Yamamoto, T. Asakura, “Measurements of flow velocity in a microscopic region using dynamic laser speckles based on the photon correlation,” Opt. Commun. 72, 269–273 (1989).
[CrossRef]

Asakura, T.

Y. Aizu, T. Asakura, “Coherent optical techniques for diagnostics of retinal blood flow,” J. Biomed. Opt. 4, 61–75 (1999).
[CrossRef] [PubMed]

Y. Aizu, T. Asakura, A. Kujimn, “Compensation of eye movements in retinal speckle flowmetry using flexible correlation analysis based on the specific variance,” J. Biomed. Opt. 3, 227–236 (1998).
[CrossRef] [PubMed]

Y. Aizu, K. Ogino, T. Sugita, T. Yamamoto, N. Takai, T. Asakura, “Evaluation of blood flow at ocular fundus by using laser speckle,” Appl. Opt. 31, 3020–3029 (1992).
[CrossRef] [PubMed]

Y. Aizu, T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood flow,” Opt. Laser Technol. 23, 205–219 (1991).
[CrossRef]

Y. Aizu, H. Ambar, T. Yamamoto, T. Asakura, “Measurements of flow velocity in a microscopic region using dynamic laser speckles based on the photon correlation,” Opt. Commun. 72, 269–273 (1989).
[CrossRef]

H. Mishina, T. Asakura, S. Nagai, “A laser Doppler microscope,” Opt. Commun. 11, 99–102 (1974).
[CrossRef]

Bednov, A. A.

S. S. Ulyanov, V. V. Tuchin, A. A. Bednov, G. E. Brill, E. I. Zakharova, “Speckle-interferometric method in application to the blood and lymph flow monitoring in microvessels,” Lasers Med. Sci. 12, 31–41 (1997).
[CrossRef]

A. A. Bednov, S. S. Ul’yanov, V. V. Tuchin, G. E. Brill, E. I. Zakharova, “Investigations of dynamics of lymph flow by means of speckle interferometric method,” Appl. Non-linear Dyn. 4, 42–51 (1996).

Bendat, J. S.

J. S. Bendat, A. G. Piersol, Random Data. Analysis and Measurements Procedures (Wiley, New York, 1986).

Benedek, G. B.

C. E. Riva, B. Ross, G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol 11, 936–944 (1972).
[PubMed]

Briers, J. D.

J. D. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13, 345–350 (1996).
[CrossRef]

J. D. Briers, S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef] [PubMed]

Brill, G. E.

S. S. Ulyanov, V. V. Tuchin, A. A. Bednov, G. E. Brill, E. I. Zakharova, “Speckle-interferometric method in application to the blood and lymph flow monitoring in microvessels,” Lasers Med. Sci. 12, 31–41 (1997).
[CrossRef]

A. A. Bednov, S. S. Ul’yanov, V. V. Tuchin, G. E. Brill, E. I. Zakharova, “Investigations of dynamics of lymph flow by means of speckle interferometric method,” Appl. Non-linear Dyn. 4, 42–51 (1996).

Dassel, A. C. M.

de Mul, F. F.

F. F. de Mul, W. Steenbergen, T. Vonck, J. Greve, “Coherence effects in modeling laser-Doppler perfusion flowmetry,” in CIS Selected Papers: Coherence-Domain Methods in Biomedical Optics, V. V. Tuchin, ed., Proc. SPIE2732, 123–133 (1996).

de Mul, F. F. M.

Eiju, T.

T. Eiju, M. Nagai, K. Matsuda, J. Ohtsubo, K. Homma, K. Shimizu, “Microscopic laser Doppler velocimeter for blood velocity measurements,” Opt. Eng. 32, 15–20 (1993).
[CrossRef]

Feke, G. T.

G. T. Feke, A. Yoshida, C. L. Schepens, “Laser based instruments for occular blood flow assessment,” J. Biomed. Opt. 3, 415–422 (1998).
[CrossRef] [PubMed]

Gellekum, T.

W. Ruetten, T. Gellekum, K. Jessen, “Investigation of laser Doppler techniques using the Monte Carlo method,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 277–288 (1995).
[CrossRef]

Goldbach, T.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[CrossRef] [PubMed]

Graaff, R.

Greve, J.

Grunwald, J. E.

Hibst, R.

A. Kiele, R. Hibst, “A new optimal wavelength for treatment of port wine stains,” Phys. Med. Biol. 40, 1559–1576 (1995).
[CrossRef]

Homma, K.

T. Eiju, M. Nagai, K. Matsuda, J. Ohtsubo, K. Homma, K. Shimizu, “Microscopic laser Doppler velocimeter for blood velocity measurements,” Opt. Eng. 32, 15–20 (1993).
[CrossRef]

Hung, T.-K.

A. Perlin, T.-K. Hung, “Flow development of a train of particles in capillaries,” J. Eng. Mech. Div. EM1, 49–66 (1978).

Jessen, K.

W. Ruetten, T. Gellekum, K. Jessen, “Investigation of laser Doppler techniques using the Monte Carlo method,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 277–288 (1995).
[CrossRef]

Kiele, A.

A. Kiele, R. Hibst, “A new optimal wavelength for treatment of port wine stains,” Phys. Med. Biol. 40, 1559–1576 (1995).
[CrossRef]

Koelink, M. H.

Kujimn, A.

Y. Aizu, T. Asakura, A. Kujimn, “Compensation of eye movements in retinal speckle flowmetry using flexible correlation analysis based on the specific variance,” J. Biomed. Opt. 3, 227–236 (1998).
[CrossRef] [PubMed]

Levenko, B. A.

B. A. Levenko, A. V. Priezzhev, S. G. Proskurin, N. B. Savchenko, “Laser Doppler microscopy of biological objects with various optical properties,” Bull. Russ. Acad. Sci. Phys. 59, 1070–1075 (1995).

Matsuda, K.

T. Eiju, M. Nagai, K. Matsuda, J. Ohtsubo, K. Homma, K. Shimizu, “Microscopic laser Doppler velocimeter for blood velocity measurements,” Opt. Eng. 32, 15–20 (1993).
[CrossRef]

Mishina, H.

H. Mishina, T. Asakura, S. Nagai, “A laser Doppler microscope,” Opt. Commun. 11, 99–102 (1974).
[CrossRef]

Nagai, M.

T. Eiju, M. Nagai, K. Matsuda, J. Ohtsubo, K. Homma, K. Shimizu, “Microscopic laser Doppler velocimeter for blood velocity measurements,” Opt. Eng. 32, 15–20 (1993).
[CrossRef]

Nagai, S.

H. Mishina, T. Asakura, S. Nagai, “A laser Doppler microscope,” Opt. Commun. 11, 99–102 (1974).
[CrossRef]

O’Keefe, K.

Ogino, K.

Ohtsubo, J.

T. Eiju, M. Nagai, K. Matsuda, J. Ohtsubo, K. Homma, K. Shimizu, “Microscopic laser Doppler velocimeter for blood velocity measurements,” Opt. Eng. 32, 15–20 (1993).
[CrossRef]

Perlin, A.

A. Perlin, T.-K. Hung, “Flow development of a train of particles in capillaries,” J. Eng. Mech. Div. EM1, 49–66 (1978).

Piersol, A. G.

J. S. Bendat, A. G. Piersol, Random Data. Analysis and Measurements Procedures (Wiley, New York, 1986).

Priezzhev, A. V.

B. A. Levenko, A. V. Priezzhev, S. G. Proskurin, N. B. Savchenko, “Laser Doppler microscopy of biological objects with various optical properties,” Bull. Russ. Acad. Sci. Phys. 59, 1070–1075 (1995).

Proskurin, S. G.

B. A. Levenko, A. V. Priezzhev, S. G. Proskurin, N. B. Savchenko, “Laser Doppler microscopy of biological objects with various optical properties,” Bull. Russ. Acad. Sci. Phys. 59, 1070–1075 (1995).

Riva, C. E.

C. E. Riva, J. E. Grunwald, S. H. Sinclair, K. O’Keefe, “Fundus camera based retinal LDV,” Appl. Opt. 20, 117–120 (1981).
[CrossRef] [PubMed]

C. E. Riva, B. Ross, G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol 11, 936–944 (1972).
[PubMed]

Ross, B.

C. E. Riva, B. Ross, G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol 11, 936–944 (1972).
[PubMed]

Ruetten, W.

W. Ruetten, T. Gellekum, K. Jessen, “Investigation of laser Doppler techniques using the Monte Carlo method,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 277–288 (1995).
[CrossRef]

Savchenko, N. B.

B. A. Levenko, A. V. Priezzhev, S. G. Proskurin, N. B. Savchenko, “Laser Doppler microscopy of biological objects with various optical properties,” Bull. Russ. Acad. Sci. Phys. 59, 1070–1075 (1995).

Schepens, C. L.

G. T. Feke, A. Yoshida, C. L. Schepens, “Laser based instruments for occular blood flow assessment,” J. Biomed. Opt. 3, 415–422 (1998).
[CrossRef] [PubMed]

Schwarzmaier, H. J.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[CrossRef] [PubMed]

Shimizu, K.

T. Eiju, M. Nagai, K. Matsuda, J. Ohtsubo, K. Homma, K. Shimizu, “Microscopic laser Doppler velocimeter for blood velocity measurements,” Opt. Eng. 32, 15–20 (1993).
[CrossRef]

Sinclair, S. H.

Starukhin, P. Yu

P. Yu Starukhin, S. S. Ulyanov, V. V. Tuchin, “Monte-Carlo simulation of Doppler shift for laser light propagation in a highly scattering medium,” in Nonlinear Dynamics and Structures in Biology and Medicine: Optical and Laser Technologies: International Workshop, V. V. Tuchin, ed., Proc. SPIE3053, 42–47 (1997).
[CrossRef]

Steenbergen, W.

F. F. de Mul, W. Steenbergen, T. Vonck, J. Greve, “Coherence effects in modeling laser-Doppler perfusion flowmetry,” in CIS Selected Papers: Coherence-Domain Methods in Biomedical Optics, V. V. Tuchin, ed., Proc. SPIE2732, 123–133 (1996).

Stevens, L.

L. Stevens, Applied Multivariate Statistics for the Social Sciences (Erlbaum, Hillsdale, N.J., 1986).

Sugita, T.

Takai, N.

Tuchin, V. V.

S. S. Ulyanov, V. V. Tuchin, A. A. Bednov, G. E. Brill, E. I. Zakharova, “Speckle-interferometric method in application to the blood and lymph flow monitoring in microvessels,” Lasers Med. Sci. 12, 31–41 (1997).
[CrossRef]

A. A. Bednov, S. S. Ul’yanov, V. V. Tuchin, G. E. Brill, E. I. Zakharova, “Investigations of dynamics of lymph flow by means of speckle interferometric method,” Appl. Non-linear Dyn. 4, 42–51 (1996).

V. V. Tuchin, S. R. Utz, I. V. Yaroslavsky, “Tissue optics, light propagation, and spectroscopy,” Opt. Eng. 33, 3178–3188 (1994).
[CrossRef]

P. Yu Starukhin, S. S. Ulyanov, V. V. Tuchin, “Monte-Carlo simulation of Doppler shift for laser light propagation in a highly scattering medium,” in Nonlinear Dynamics and Structures in Biology and Medicine: Optical and Laser Technologies: International Workshop, V. V. Tuchin, ed., Proc. SPIE3053, 42–47 (1997).
[CrossRef]

Ul’yanov, S. S.

A. A. Bednov, S. S. Ul’yanov, V. V. Tuchin, G. E. Brill, E. I. Zakharova, “Investigations of dynamics of lymph flow by means of speckle interferometric method,” Appl. Non-linear Dyn. 4, 42–51 (1996).

S. S. Ul’yanov, “Dynamic of statistically inhomogeneous speckles: a new type of manifestation of Doppler effect,” Opt. Lett. 20, 1313–1315 (1995).
[CrossRef]

S. S. Ul’yanov, “The peculiarities of manifestation of the Doppler effect at the scattering of focused Gaussian beams on moving random inhomogeneous media,” Bull. Russ. Acad. Sci. Phys. 59, 133–137 (1995).

S. S. Ul’yanov, “A new type of manifestation of Doppler effect. “An application to blood and lymph flow measurements,” Opt. Eng. 34, 2850–2855 (1995).
[CrossRef]

Ulyanov, S. S.

S. S. Ulyanov, “Speckled speckles statistics with a small number of scatterers, an implication for blood flow measurements,” J. Biomed. Opt. 3, 237–245 (1998).
[CrossRef] [PubMed]

S. S. Ulyanov, V. V. Tuchin, A. A. Bednov, G. E. Brill, E. I. Zakharova, “Speckle-interferometric method in application to the blood and lymph flow monitoring in microvessels,” Lasers Med. Sci. 12, 31–41 (1997).
[CrossRef]

P. Yu Starukhin, S. S. Ulyanov, V. V. Tuchin, “Monte-Carlo simulation of Doppler shift for laser light propagation in a highly scattering medium,” in Nonlinear Dynamics and Structures in Biology and Medicine: Optical and Laser Technologies: International Workshop, V. V. Tuchin, ed., Proc. SPIE3053, 42–47 (1997).
[CrossRef]

Utz, S. R.

V. V. Tuchin, S. R. Utz, I. V. Yaroslavsky, “Tissue optics, light propagation, and spectroscopy,” Opt. Eng. 33, 3178–3188 (1994).
[CrossRef]

Vonck, T.

F. F. de Mul, W. Steenbergen, T. Vonck, J. Greve, “Coherence effects in modeling laser-Doppler perfusion flowmetry,” in CIS Selected Papers: Coherence-Domain Methods in Biomedical Optics, V. V. Tuchin, ed., Proc. SPIE2732, 123–133 (1996).

Webster, S.

J. D. Briers, S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef] [PubMed]

Yamamoto, T.

Y. Aizu, K. Ogino, T. Sugita, T. Yamamoto, N. Takai, T. Asakura, “Evaluation of blood flow at ocular fundus by using laser speckle,” Appl. Opt. 31, 3020–3029 (1992).
[CrossRef] [PubMed]

Y. Aizu, H. Ambar, T. Yamamoto, T. Asakura, “Measurements of flow velocity in a microscopic region using dynamic laser speckles based on the photon correlation,” Opt. Commun. 72, 269–273 (1989).
[CrossRef]

Yaroslavsky, A. N.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[CrossRef] [PubMed]

Yaroslavsky, I. V.

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[CrossRef] [PubMed]

V. V. Tuchin, S. R. Utz, I. V. Yaroslavsky, “Tissue optics, light propagation, and spectroscopy,” Opt. Eng. 33, 3178–3188 (1994).
[CrossRef]

Yoshida, A.

G. T. Feke, A. Yoshida, C. L. Schepens, “Laser based instruments for occular blood flow assessment,” J. Biomed. Opt. 3, 415–422 (1998).
[CrossRef] [PubMed]

Zakharova, E. I.

S. S. Ulyanov, V. V. Tuchin, A. A. Bednov, G. E. Brill, E. I. Zakharova, “Speckle-interferometric method in application to the blood and lymph flow monitoring in microvessels,” Lasers Med. Sci. 12, 31–41 (1997).
[CrossRef]

A. A. Bednov, S. S. Ul’yanov, V. V. Tuchin, G. E. Brill, E. I. Zakharova, “Investigations of dynamics of lymph flow by means of speckle interferometric method,” Appl. Non-linear Dyn. 4, 42–51 (1996).

Appl. Non-linear Dyn. (1)

A. A. Bednov, S. S. Ul’yanov, V. V. Tuchin, G. E. Brill, E. I. Zakharova, “Investigations of dynamics of lymph flow by means of speckle interferometric method,” Appl. Non-linear Dyn. 4, 42–51 (1996).

Appl. Opt. (4)

Bull. Russ. Acad. Sci. Phys. (2)

B. A. Levenko, A. V. Priezzhev, S. G. Proskurin, N. B. Savchenko, “Laser Doppler microscopy of biological objects with various optical properties,” Bull. Russ. Acad. Sci. Phys. 59, 1070–1075 (1995).

S. S. Ul’yanov, “The peculiarities of manifestation of the Doppler effect at the scattering of focused Gaussian beams on moving random inhomogeneous media,” Bull. Russ. Acad. Sci. Phys. 59, 133–137 (1995).

Invest. Ophthalmol (1)

C. E. Riva, B. Ross, G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol 11, 936–944 (1972).
[PubMed]

J. Biomed. Opt. (6)

Y. Aizu, T. Asakura, A. Kujimn, “Compensation of eye movements in retinal speckle flowmetry using flexible correlation analysis based on the specific variance,” J. Biomed. Opt. 3, 227–236 (1998).
[CrossRef] [PubMed]

G. T. Feke, A. Yoshida, C. L. Schepens, “Laser based instruments for occular blood flow assessment,” J. Biomed. Opt. 3, 415–422 (1998).
[CrossRef] [PubMed]

S. S. Ulyanov, “Speckled speckles statistics with a small number of scatterers, an implication for blood flow measurements,” J. Biomed. Opt. 3, 237–245 (1998).
[CrossRef] [PubMed]

J. D. Briers, S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).
[CrossRef] [PubMed]

Y. Aizu, T. Asakura, “Coherent optical techniques for diagnostics of retinal blood flow,” J. Biomed. Opt. 4, 61–75 (1999).
[CrossRef] [PubMed]

A. N. Yaroslavsky, I. V. Yaroslavsky, T. Goldbach, H. J. Schwarzmaier, “Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements,” J. Biomed. Opt. 4, 47–53 (1999).
[CrossRef] [PubMed]

J. Eng. Mech. Div. (1)

A. Perlin, T.-K. Hung, “Flow development of a train of particles in capillaries,” J. Eng. Mech. Div. EM1, 49–66 (1978).

J. Opt. Soc. Am. A (1)

Lasers Med. Sci. (1)

S. S. Ulyanov, V. V. Tuchin, A. A. Bednov, G. E. Brill, E. I. Zakharova, “Speckle-interferometric method in application to the blood and lymph flow monitoring in microvessels,” Lasers Med. Sci. 12, 31–41 (1997).
[CrossRef]

Opt. Commun. (2)

Y. Aizu, H. Ambar, T. Yamamoto, T. Asakura, “Measurements of flow velocity in a microscopic region using dynamic laser speckles based on the photon correlation,” Opt. Commun. 72, 269–273 (1989).
[CrossRef]

H. Mishina, T. Asakura, S. Nagai, “A laser Doppler microscope,” Opt. Commun. 11, 99–102 (1974).
[CrossRef]

Opt. Eng. (3)

T. Eiju, M. Nagai, K. Matsuda, J. Ohtsubo, K. Homma, K. Shimizu, “Microscopic laser Doppler velocimeter for blood velocity measurements,” Opt. Eng. 32, 15–20 (1993).
[CrossRef]

S. S. Ul’yanov, “A new type of manifestation of Doppler effect. “An application to blood and lymph flow measurements,” Opt. Eng. 34, 2850–2855 (1995).
[CrossRef]

V. V. Tuchin, S. R. Utz, I. V. Yaroslavsky, “Tissue optics, light propagation, and spectroscopy,” Opt. Eng. 33, 3178–3188 (1994).
[CrossRef]

Opt. Laser Technol. (1)

Y. Aizu, T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood flow,” Opt. Laser Technol. 23, 205–219 (1991).
[CrossRef]

Opt. Lett. (1)

Phys. Med. Biol. (1)

A. Kiele, R. Hibst, “A new optimal wavelength for treatment of port wine stains,” Phys. Med. Biol. 40, 1559–1576 (1995).
[CrossRef]

Other (7)

A. D. Aczel, Complete Business Statistics (Irwin, Homewood, Ill., 1989).

J. S. Bendat, A. G. Piersol, Random Data. Analysis and Measurements Procedures (Wiley, New York, 1986).

F. F. de Mul, W. Steenbergen, T. Vonck, J. Greve, “Coherence effects in modeling laser-Doppler perfusion flowmetry,” in CIS Selected Papers: Coherence-Domain Methods in Biomedical Optics, V. V. Tuchin, ed., Proc. SPIE2732, 123–133 (1996).

P. Yu Starukhin, S. S. Ulyanov, V. V. Tuchin, “Monte-Carlo simulation of Doppler shift for laser light propagation in a highly scattering medium,” in Nonlinear Dynamics and Structures in Biology and Medicine: Optical and Laser Technologies: International Workshop, V. V. Tuchin, ed., Proc. SPIE3053, 42–47 (1997).
[CrossRef]

L. Stevens, Applied Multivariate Statistics for the Social Sciences (Erlbaum, Hillsdale, N.J., 1986).

A. P. Shepherd, P. A. Oberg, eds., Laser Doppler Blood Flowmetry, (Kluwer Academic, Boston, 1989).

W. Ruetten, T. Gellekum, K. Jessen, “Investigation of laser Doppler techniques using the Monte Carlo method,” in Photon Transport in Highly Scattering Tissue, S. Avrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 277–288 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optical model of the vessel under consideration.

Fig. 2
Fig. 2

Optical scheme of the measuring system: 1, laser; 2, 4, microobjectives; 3, beam splitter; 5, stage; 6, rat; 7, mirror; 8, lamp; 9, optical system of conventional microscope; 10, camera; 11, image analyzer.

Fig. 3
Fig. 3

Image of a small blood vessel.

Fig. 4
Fig. 4

Output signal of the measuring system.

Fig. 5
Fig. 5

Image of a small blood vessel containing a moving white blood cell. The rectangular box marks the leukocyte.

Fig. 6
Fig. 6

Doppler spectrum of fluctuations of scattered intensity: points, results of Monte Carlo simulations; solid curves, approximation by a Lorentz function. a, r 0 = 40 µm; b, r 0 = 60 µm; c, r 0 = 80 µm.

Fig. 7
Fig. 7

Dependence of the average Doppler shift as a function of waist beam radius; squares, results of Monte Carlo simulations; solid curves, approximation by the function f(x) = 1/x. a, r 0 = 20 µm; b, r 0 = 40 µm; c, r 0 = 60 µm.

Fig. 8
Fig. 8

Dependence of the bandwidth of the Doppler spectrum on the radius of the investigated blood vessel.

Fig. 9
Fig. 9

Dependence of the bandwidth of the Doppler spectrum on the depth of the imbedded blood vessel, in the tissue: points, results of Monte Carlo simulations; solid curves, linear approximation. a, r 0 = 20 µm; b, r 0 = 40 µm; c, r 0 = 60 µm; d, r 0 = 100 µm.

Fig. 10
Fig. 10

Dependence of average Doppler shift on g factor of blood: a, analytical curve; b, Monte Carlo simulation.

Fig. 11
Fig. 11

Dependence of normalized first spectral moment on g factor of blood: a, r 0 = 40 µm; b, r 0 = 60 µm; c, r 0 = 80 µm; d, r 0 = 100 µm.

Fig. 12
Fig. 12

Relation between the theoretical and the experimental results of measurements of the velocity of blood in a vessel of diameter 7.5 µm; solid line, linear regression.

Tables (2)

Tables Icon

Table 1 Optical Parameters of Biological Tissue Used in Monte Carlo Simulations

Tables Icon

Table 2 Standard Deviation of Normalized Residuals for Three Values of Vessel Radius

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

σe=σ/N.
SIω=-HξHξ-ωdξ,
Mn=0ωnSIωdω0SIωdω,
Vo=kM1,
F0=2Vλ sinθ2cosα,
Δf=2Vλ sinarccos g2cosα,
V0=M1/M0171.8-3333.3g-0.98)+1.055(ro-60.

Metrics