Abstract

A laboratory facility for characterizing biological dosimeters for the measurement of UV radiation has been built and tested. The facility is based on a solar simulator, stabilized by photofeedback, and monitored by a spectroradiometer, with a versatile filter arrangement. This enables the following characteristics of the dosimeters to be ascertained: spectral response, linearity, and reciprocity; angular acceptance and response; calibration in simulated sunlight. The system has been tested on a variety of dosimeters and has the potential to be used with other radiometers, subject currently to the size of their active surface.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Horneck, “Biological UV dosimeters,” in The Effects of Ozone Depletion on Aquatic Ecosystems, Environmental Intelligence Unit Series, D. P. Halder, ed., (R. G. Landes Company and Academic, Austin, Tex., 1997), pp. 119–142.
  2. L. E. Quintern, G. Horneck, U. Eschweiler, H. Bücker, “A biofilm used as ultraviolet dosimeter,” J. Photochem. Photobiol. 55, 389–395 (1992).
  3. P. Grof, S. Gaspar, G. Ronto, “Use of uracil thin layer for measuring biologically effective dose,” J. Photochem. Photobiol. 64, 800–806 (1996).
  4. N. Munakata, N. Morohoshi, F. Hieda, K. Suzuki, K. Furusawa, H. Shimaru, T. Ito, “Experimental correspondence between spore dosimetry and spectral photometry of solar ultraviolet radiation,” J. Photochem. Photobiol. 63, 74–78 (1996).
  5. L. E. Quintern, Y. Furusawa, K. Fukutsu, H. Holtschmidt, “Characterization and application of UV detector spore films: the sensitivity curve of a new detector system provides good similarity to the action spectrum of UV-induced erythema in human skin,” J. Photochem. Photobiol. B 37, 158–166 (1997).
    [CrossRef] [PubMed]
  6. G. Ronto, S. Gaspar, A. Berces, “Phages T7 in biological UV dose measurements,” J. Photochem. Photobiol. B 12, 285–294 (1992).
    [CrossRef]
  7. I. P. Terenetskaya, D. Bolsée, D. Gillotay, “Radiometric characterization and mathematical description of measuring effects in vitamin D biodosimeter,” in Proceedings of European Conference on Atmospheric UV Radiation (ECUV), Helsinki (Finnish Meterological Institute, Helsinki, Finland, 1998).
  8. I. P. Terenetskaya, D. Gillotay, D. Bolsée, “Laboratory calibration of the vitamin D biodosimeter: examination of the model and correlation between biological and physical UV doses,” XXIV General Assembly of the EGS, The Hague, 19–23April1999, Abstracts Vol. 1, p. 478.
  9. A. Krins, B. Dörschel, J. Henniger, P. Knuschke: “Mathematical description of the reading in personal UV dosimeters taking polysulphone film as an example,” Radiat. Prot. Dosim. 78, 195–204 (1998).
    [CrossRef]
  10. T. P. Coohill, “Action spectra revisited,” J. Photochem. Photobiol. B 13, 95–98 (1992).
    [CrossRef] [PubMed]
  11. T. P. Coohill, “Action spectra again?” J. Photochem. Photobiol. 54, 859–870 (1990).
  12. N. Munakata, O. Masashi, S. Watanabe, “Monitoring of solar-UV exposure among school children in five Japanese cities using spore dosimeter and UV-coloring labels,” Jpn. J. Cancer Res. 89, 235–245 (1998).
    [CrossRef] [PubMed]
  13. A. Cabaj, R. Sommer, D. Schoenen, “Biodosimetry: model calculations for UV water disinfection devices with regard to dose distributions,” Water Res. 4, 1003–1009 (1996).
    [CrossRef]
  14. I. P. Terenetskaya, “Provitamin D photoiosomerization as possible UV-B monitor: kinetic study using a tunable dye laser,” in Ultraviolet Radiation Hazards, D. H. Sliney, M. Belkin, eds., Proc. SPIE2134B, 135–140 (1994).
  15. K. D. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (1987).
  16. M. Watanabe, M. Furuya, Y. Miyoshi, Y. Inoue, I. Iwahashi, K. Matsumoto, “Design and performance of the Okasaki large spectrograph for photobiological research,” J. Photochem. Photobiol. 36, 491–498 (1982).
  17. S. F. Steeneken, A. G. Buma, W. C. Gieskes, “Changes in transmission characteristics of polymethylmethacrylate and cellulose (III) acetate during exposure to ultraviolet light,” J. Photochem. Photobiol. 61, 276–280 (1995).
  18. T. Döhring, M. Köfferlein, S. Thiel, H. K. Seidlitz, “Spectral shaping of artificial UV-B irradiation for vegetation stress research,” J. Plant Physiol. 148, 115–119 (1996).
    [CrossRef]
  19. M. Tevini, U. Mark, M. Saile, “Plant experiments in growth chamberse illuminated with natural sunlight,” in Environmental Research with Plants in Closed Chambers, H. D. Payer, T. Pfirrmann, P. Mathy, eds (Commission of the European Communities, Brussels, 1989), pp. 240–251.
  20. A. R. Webb, “Measuring UV radiation: a discussion of dosimeter properties, uses, and limitations,” J. Photochem. Photobiol. B 31, 9–13 (1995).
    [CrossRef]
  21. P. Knuschke, J. Barth, “Biologically weighted personal UV dosimetry,” J. Photochem. Photobiol. B 36, 77–83 (1996).
    [CrossRef] [PubMed]
  22. O. N. Galkin, I. O. Terenetskaya, “Vitamin D biodosimeter: basic characteristics and prospect applications,” J. Photochem. Photobiol. B 53, 72–79 (1999).
    [CrossRef]
  23. E. Havinga, “Vitamin D, example and challenge,” Experentia 29, 1181–1193 (1973).
    [CrossRef]
  24. A. Davis, G. H. W. Deane, B. L. Diffey, “Possible dosimeter for UV radiation,” Nature (London) 261, 169–170 (1976).
    [CrossRef]
  25. A. Krins, B. Dörschel, J. Henniger, P. Knuschke, A. Bais, “Readings of polysulphone film after fractionated and continuous exposures to UV radiation and consequences for the calculation of the reading resulting form polychromatic UV radiation,” Radiat. Prot. Dosim. 83, 303–308 (1999).
    [CrossRef]
  26. A. Krins, D. Bolsée, B. Dörschel, D. Gillotay, P. Knuschke, “Angular dependence of the efficiency of the UV sensor polysulphone film,” Radiat. Prot. Dosim. (in press).
  27. G. Horneck, G. Seckmeyer, P. C. Simon, “Biologically weighted dosimetry of solar UV radiation,” (DG XII/D, Brussels, 25September1996).
  28. G. Horneck, “Development of biological dosimetry systems for monitoring the impact of solar UVB radiation on the biosphere and on human health,” (DG XII/D, Brussels, March1999).

1999 (3)

I. P. Terenetskaya, D. Gillotay, D. Bolsée, “Laboratory calibration of the vitamin D biodosimeter: examination of the model and correlation between biological and physical UV doses,” XXIV General Assembly of the EGS, The Hague, 19–23April1999, Abstracts Vol. 1, p. 478.

O. N. Galkin, I. O. Terenetskaya, “Vitamin D biodosimeter: basic characteristics and prospect applications,” J. Photochem. Photobiol. B 53, 72–79 (1999).
[CrossRef]

A. Krins, B. Dörschel, J. Henniger, P. Knuschke, A. Bais, “Readings of polysulphone film after fractionated and continuous exposures to UV radiation and consequences for the calculation of the reading resulting form polychromatic UV radiation,” Radiat. Prot. Dosim. 83, 303–308 (1999).
[CrossRef]

1998 (2)

N. Munakata, O. Masashi, S. Watanabe, “Monitoring of solar-UV exposure among school children in five Japanese cities using spore dosimeter and UV-coloring labels,” Jpn. J. Cancer Res. 89, 235–245 (1998).
[CrossRef] [PubMed]

A. Krins, B. Dörschel, J. Henniger, P. Knuschke: “Mathematical description of the reading in personal UV dosimeters taking polysulphone film as an example,” Radiat. Prot. Dosim. 78, 195–204 (1998).
[CrossRef]

1997 (1)

L. E. Quintern, Y. Furusawa, K. Fukutsu, H. Holtschmidt, “Characterization and application of UV detector spore films: the sensitivity curve of a new detector system provides good similarity to the action spectrum of UV-induced erythema in human skin,” J. Photochem. Photobiol. B 37, 158–166 (1997).
[CrossRef] [PubMed]

1996 (5)

P. Grof, S. Gaspar, G. Ronto, “Use of uracil thin layer for measuring biologically effective dose,” J. Photochem. Photobiol. 64, 800–806 (1996).

N. Munakata, N. Morohoshi, F. Hieda, K. Suzuki, K. Furusawa, H. Shimaru, T. Ito, “Experimental correspondence between spore dosimetry and spectral photometry of solar ultraviolet radiation,” J. Photochem. Photobiol. 63, 74–78 (1996).

A. Cabaj, R. Sommer, D. Schoenen, “Biodosimetry: model calculations for UV water disinfection devices with regard to dose distributions,” Water Res. 4, 1003–1009 (1996).
[CrossRef]

T. Döhring, M. Köfferlein, S. Thiel, H. K. Seidlitz, “Spectral shaping of artificial UV-B irradiation for vegetation stress research,” J. Plant Physiol. 148, 115–119 (1996).
[CrossRef]

P. Knuschke, J. Barth, “Biologically weighted personal UV dosimetry,” J. Photochem. Photobiol. B 36, 77–83 (1996).
[CrossRef] [PubMed]

1995 (2)

A. R. Webb, “Measuring UV radiation: a discussion of dosimeter properties, uses, and limitations,” J. Photochem. Photobiol. B 31, 9–13 (1995).
[CrossRef]

S. F. Steeneken, A. G. Buma, W. C. Gieskes, “Changes in transmission characteristics of polymethylmethacrylate and cellulose (III) acetate during exposure to ultraviolet light,” J. Photochem. Photobiol. 61, 276–280 (1995).

1992 (3)

L. E. Quintern, G. Horneck, U. Eschweiler, H. Bücker, “A biofilm used as ultraviolet dosimeter,” J. Photochem. Photobiol. 55, 389–395 (1992).

G. Ronto, S. Gaspar, A. Berces, “Phages T7 in biological UV dose measurements,” J. Photochem. Photobiol. B 12, 285–294 (1992).
[CrossRef]

T. P. Coohill, “Action spectra revisited,” J. Photochem. Photobiol. B 13, 95–98 (1992).
[CrossRef] [PubMed]

1990 (1)

T. P. Coohill, “Action spectra again?” J. Photochem. Photobiol. 54, 859–870 (1990).

1982 (1)

M. Watanabe, M. Furuya, Y. Miyoshi, Y. Inoue, I. Iwahashi, K. Matsumoto, “Design and performance of the Okasaki large spectrograph for photobiological research,” J. Photochem. Photobiol. 36, 491–498 (1982).

1976 (1)

A. Davis, G. H. W. Deane, B. L. Diffey, “Possible dosimeter for UV radiation,” Nature (London) 261, 169–170 (1976).
[CrossRef]

1973 (1)

E. Havinga, “Vitamin D, example and challenge,” Experentia 29, 1181–1193 (1973).
[CrossRef]

Bais, A.

A. Krins, B. Dörschel, J. Henniger, P. Knuschke, A. Bais, “Readings of polysulphone film after fractionated and continuous exposures to UV radiation and consequences for the calculation of the reading resulting form polychromatic UV radiation,” Radiat. Prot. Dosim. 83, 303–308 (1999).
[CrossRef]

Barth, J.

P. Knuschke, J. Barth, “Biologically weighted personal UV dosimetry,” J. Photochem. Photobiol. B 36, 77–83 (1996).
[CrossRef] [PubMed]

Berces, A.

G. Ronto, S. Gaspar, A. Berces, “Phages T7 in biological UV dose measurements,” J. Photochem. Photobiol. B 12, 285–294 (1992).
[CrossRef]

Bolsée, D.

I. P. Terenetskaya, D. Gillotay, D. Bolsée, “Laboratory calibration of the vitamin D biodosimeter: examination of the model and correlation between biological and physical UV doses,” XXIV General Assembly of the EGS, The Hague, 19–23April1999, Abstracts Vol. 1, p. 478.

A. Krins, D. Bolsée, B. Dörschel, D. Gillotay, P. Knuschke, “Angular dependence of the efficiency of the UV sensor polysulphone film,” Radiat. Prot. Dosim. (in press).

I. P. Terenetskaya, D. Bolsée, D. Gillotay, “Radiometric characterization and mathematical description of measuring effects in vitamin D biodosimeter,” in Proceedings of European Conference on Atmospheric UV Radiation (ECUV), Helsinki (Finnish Meterological Institute, Helsinki, Finland, 1998).

Bücker, H.

L. E. Quintern, G. Horneck, U. Eschweiler, H. Bücker, “A biofilm used as ultraviolet dosimeter,” J. Photochem. Photobiol. 55, 389–395 (1992).

Buma, A. G.

S. F. Steeneken, A. G. Buma, W. C. Gieskes, “Changes in transmission characteristics of polymethylmethacrylate and cellulose (III) acetate during exposure to ultraviolet light,” J. Photochem. Photobiol. 61, 276–280 (1995).

Cabaj, A.

A. Cabaj, R. Sommer, D. Schoenen, “Biodosimetry: model calculations for UV water disinfection devices with regard to dose distributions,” Water Res. 4, 1003–1009 (1996).
[CrossRef]

Coohill, T. P.

T. P. Coohill, “Action spectra revisited,” J. Photochem. Photobiol. B 13, 95–98 (1992).
[CrossRef] [PubMed]

T. P. Coohill, “Action spectra again?” J. Photochem. Photobiol. 54, 859–870 (1990).

Davis, A.

A. Davis, G. H. W. Deane, B. L. Diffey, “Possible dosimeter for UV radiation,” Nature (London) 261, 169–170 (1976).
[CrossRef]

Deane, G. H. W.

A. Davis, G. H. W. Deane, B. L. Diffey, “Possible dosimeter for UV radiation,” Nature (London) 261, 169–170 (1976).
[CrossRef]

Diffey, B. L.

A. Davis, G. H. W. Deane, B. L. Diffey, “Possible dosimeter for UV radiation,” Nature (London) 261, 169–170 (1976).
[CrossRef]

Döhring, T.

T. Döhring, M. Köfferlein, S. Thiel, H. K. Seidlitz, “Spectral shaping of artificial UV-B irradiation for vegetation stress research,” J. Plant Physiol. 148, 115–119 (1996).
[CrossRef]

Dörschel, B.

A. Krins, B. Dörschel, J. Henniger, P. Knuschke, A. Bais, “Readings of polysulphone film after fractionated and continuous exposures to UV radiation and consequences for the calculation of the reading resulting form polychromatic UV radiation,” Radiat. Prot. Dosim. 83, 303–308 (1999).
[CrossRef]

A. Krins, B. Dörschel, J. Henniger, P. Knuschke: “Mathematical description of the reading in personal UV dosimeters taking polysulphone film as an example,” Radiat. Prot. Dosim. 78, 195–204 (1998).
[CrossRef]

A. Krins, D. Bolsée, B. Dörschel, D. Gillotay, P. Knuschke, “Angular dependence of the efficiency of the UV sensor polysulphone film,” Radiat. Prot. Dosim. (in press).

Eschweiler, U.

L. E. Quintern, G. Horneck, U. Eschweiler, H. Bücker, “A biofilm used as ultraviolet dosimeter,” J. Photochem. Photobiol. 55, 389–395 (1992).

Fukutsu, K.

L. E. Quintern, Y. Furusawa, K. Fukutsu, H. Holtschmidt, “Characterization and application of UV detector spore films: the sensitivity curve of a new detector system provides good similarity to the action spectrum of UV-induced erythema in human skin,” J. Photochem. Photobiol. B 37, 158–166 (1997).
[CrossRef] [PubMed]

Furusawa, K.

N. Munakata, N. Morohoshi, F. Hieda, K. Suzuki, K. Furusawa, H. Shimaru, T. Ito, “Experimental correspondence between spore dosimetry and spectral photometry of solar ultraviolet radiation,” J. Photochem. Photobiol. 63, 74–78 (1996).

Furusawa, Y.

L. E. Quintern, Y. Furusawa, K. Fukutsu, H. Holtschmidt, “Characterization and application of UV detector spore films: the sensitivity curve of a new detector system provides good similarity to the action spectrum of UV-induced erythema in human skin,” J. Photochem. Photobiol. B 37, 158–166 (1997).
[CrossRef] [PubMed]

Furuya, M.

M. Watanabe, M. Furuya, Y. Miyoshi, Y. Inoue, I. Iwahashi, K. Matsumoto, “Design and performance of the Okasaki large spectrograph for photobiological research,” J. Photochem. Photobiol. 36, 491–498 (1982).

Galkin, O. N.

O. N. Galkin, I. O. Terenetskaya, “Vitamin D biodosimeter: basic characteristics and prospect applications,” J. Photochem. Photobiol. B 53, 72–79 (1999).
[CrossRef]

Gaspar, S.

P. Grof, S. Gaspar, G. Ronto, “Use of uracil thin layer for measuring biologically effective dose,” J. Photochem. Photobiol. 64, 800–806 (1996).

G. Ronto, S. Gaspar, A. Berces, “Phages T7 in biological UV dose measurements,” J. Photochem. Photobiol. B 12, 285–294 (1992).
[CrossRef]

Gieskes, W. C.

S. F. Steeneken, A. G. Buma, W. C. Gieskes, “Changes in transmission characteristics of polymethylmethacrylate and cellulose (III) acetate during exposure to ultraviolet light,” J. Photochem. Photobiol. 61, 276–280 (1995).

Gillotay, D.

I. P. Terenetskaya, D. Gillotay, D. Bolsée, “Laboratory calibration of the vitamin D biodosimeter: examination of the model and correlation between biological and physical UV doses,” XXIV General Assembly of the EGS, The Hague, 19–23April1999, Abstracts Vol. 1, p. 478.

I. P. Terenetskaya, D. Bolsée, D. Gillotay, “Radiometric characterization and mathematical description of measuring effects in vitamin D biodosimeter,” in Proceedings of European Conference on Atmospheric UV Radiation (ECUV), Helsinki (Finnish Meterological Institute, Helsinki, Finland, 1998).

A. Krins, D. Bolsée, B. Dörschel, D. Gillotay, P. Knuschke, “Angular dependence of the efficiency of the UV sensor polysulphone film,” Radiat. Prot. Dosim. (in press).

Grof, P.

P. Grof, S. Gaspar, G. Ronto, “Use of uracil thin layer for measuring biologically effective dose,” J. Photochem. Photobiol. 64, 800–806 (1996).

Havinga, E.

E. Havinga, “Vitamin D, example and challenge,” Experentia 29, 1181–1193 (1973).
[CrossRef]

Henniger, J.

A. Krins, B. Dörschel, J. Henniger, P. Knuschke, A. Bais, “Readings of polysulphone film after fractionated and continuous exposures to UV radiation and consequences for the calculation of the reading resulting form polychromatic UV radiation,” Radiat. Prot. Dosim. 83, 303–308 (1999).
[CrossRef]

A. Krins, B. Dörschel, J. Henniger, P. Knuschke: “Mathematical description of the reading in personal UV dosimeters taking polysulphone film as an example,” Radiat. Prot. Dosim. 78, 195–204 (1998).
[CrossRef]

Hieda, F.

N. Munakata, N. Morohoshi, F. Hieda, K. Suzuki, K. Furusawa, H. Shimaru, T. Ito, “Experimental correspondence between spore dosimetry and spectral photometry of solar ultraviolet radiation,” J. Photochem. Photobiol. 63, 74–78 (1996).

Holtschmidt, H.

L. E. Quintern, Y. Furusawa, K. Fukutsu, H. Holtschmidt, “Characterization and application of UV detector spore films: the sensitivity curve of a new detector system provides good similarity to the action spectrum of UV-induced erythema in human skin,” J. Photochem. Photobiol. B 37, 158–166 (1997).
[CrossRef] [PubMed]

Horneck, G.

L. E. Quintern, G. Horneck, U. Eschweiler, H. Bücker, “A biofilm used as ultraviolet dosimeter,” J. Photochem. Photobiol. 55, 389–395 (1992).

G. Horneck, G. Seckmeyer, P. C. Simon, “Biologically weighted dosimetry of solar UV radiation,” (DG XII/D, Brussels, 25September1996).

G. Horneck, “Development of biological dosimetry systems for monitoring the impact of solar UVB radiation on the biosphere and on human health,” (DG XII/D, Brussels, March1999).

G. Horneck, “Biological UV dosimeters,” in The Effects of Ozone Depletion on Aquatic Ecosystems, Environmental Intelligence Unit Series, D. P. Halder, ed., (R. G. Landes Company and Academic, Austin, Tex., 1997), pp. 119–142.

Inoue, Y.

M. Watanabe, M. Furuya, Y. Miyoshi, Y. Inoue, I. Iwahashi, K. Matsumoto, “Design and performance of the Okasaki large spectrograph for photobiological research,” J. Photochem. Photobiol. 36, 491–498 (1982).

Ito, T.

N. Munakata, N. Morohoshi, F. Hieda, K. Suzuki, K. Furusawa, H. Shimaru, T. Ito, “Experimental correspondence between spore dosimetry and spectral photometry of solar ultraviolet radiation,” J. Photochem. Photobiol. 63, 74–78 (1996).

Iwahashi, I.

M. Watanabe, M. Furuya, Y. Miyoshi, Y. Inoue, I. Iwahashi, K. Matsumoto, “Design and performance of the Okasaki large spectrograph for photobiological research,” J. Photochem. Photobiol. 36, 491–498 (1982).

Jackson, J. K.

K. D. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (1987).

Knuschke, P.

A. Krins, B. Dörschel, J. Henniger, P. Knuschke, A. Bais, “Readings of polysulphone film after fractionated and continuous exposures to UV radiation and consequences for the calculation of the reading resulting form polychromatic UV radiation,” Radiat. Prot. Dosim. 83, 303–308 (1999).
[CrossRef]

A. Krins, B. Dörschel, J. Henniger, P. Knuschke: “Mathematical description of the reading in personal UV dosimeters taking polysulphone film as an example,” Radiat. Prot. Dosim. 78, 195–204 (1998).
[CrossRef]

P. Knuschke, J. Barth, “Biologically weighted personal UV dosimetry,” J. Photochem. Photobiol. B 36, 77–83 (1996).
[CrossRef] [PubMed]

A. Krins, D. Bolsée, B. Dörschel, D. Gillotay, P. Knuschke, “Angular dependence of the efficiency of the UV sensor polysulphone film,” Radiat. Prot. Dosim. (in press).

Köfferlein, M.

T. Döhring, M. Köfferlein, S. Thiel, H. K. Seidlitz, “Spectral shaping of artificial UV-B irradiation for vegetation stress research,” J. Plant Physiol. 148, 115–119 (1996).
[CrossRef]

Krins, A.

A. Krins, B. Dörschel, J. Henniger, P. Knuschke, A. Bais, “Readings of polysulphone film after fractionated and continuous exposures to UV radiation and consequences for the calculation of the reading resulting form polychromatic UV radiation,” Radiat. Prot. Dosim. 83, 303–308 (1999).
[CrossRef]

A. Krins, B. Dörschel, J. Henniger, P. Knuschke: “Mathematical description of the reading in personal UV dosimeters taking polysulphone film as an example,” Radiat. Prot. Dosim. 78, 195–204 (1998).
[CrossRef]

A. Krins, D. Bolsée, B. Dörschel, D. Gillotay, P. Knuschke, “Angular dependence of the efficiency of the UV sensor polysulphone film,” Radiat. Prot. Dosim. (in press).

Mark, U.

M. Tevini, U. Mark, M. Saile, “Plant experiments in growth chamberse illuminated with natural sunlight,” in Environmental Research with Plants in Closed Chambers, H. D. Payer, T. Pfirrmann, P. Mathy, eds (Commission of the European Communities, Brussels, 1989), pp. 240–251.

Masashi, O.

N. Munakata, O. Masashi, S. Watanabe, “Monitoring of solar-UV exposure among school children in five Japanese cities using spore dosimeter and UV-coloring labels,” Jpn. J. Cancer Res. 89, 235–245 (1998).
[CrossRef] [PubMed]

Matsumoto, K.

M. Watanabe, M. Furuya, Y. Miyoshi, Y. Inoue, I. Iwahashi, K. Matsumoto, “Design and performance of the Okasaki large spectrograph for photobiological research,” J. Photochem. Photobiol. 36, 491–498 (1982).

McSparron, D. A.

K. D. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (1987).

Miyoshi, Y.

M. Watanabe, M. Furuya, Y. Miyoshi, Y. Inoue, I. Iwahashi, K. Matsumoto, “Design and performance of the Okasaki large spectrograph for photobiological research,” J. Photochem. Photobiol. 36, 491–498 (1982).

Morohoshi, N.

N. Munakata, N. Morohoshi, F. Hieda, K. Suzuki, K. Furusawa, H. Shimaru, T. Ito, “Experimental correspondence between spore dosimetry and spectral photometry of solar ultraviolet radiation,” J. Photochem. Photobiol. 63, 74–78 (1996).

Munakata, N.

N. Munakata, O. Masashi, S. Watanabe, “Monitoring of solar-UV exposure among school children in five Japanese cities using spore dosimeter and UV-coloring labels,” Jpn. J. Cancer Res. 89, 235–245 (1998).
[CrossRef] [PubMed]

N. Munakata, N. Morohoshi, F. Hieda, K. Suzuki, K. Furusawa, H. Shimaru, T. Ito, “Experimental correspondence between spore dosimetry and spectral photometry of solar ultraviolet radiation,” J. Photochem. Photobiol. 63, 74–78 (1996).

Quintern, L. E.

L. E. Quintern, Y. Furusawa, K. Fukutsu, H. Holtschmidt, “Characterization and application of UV detector spore films: the sensitivity curve of a new detector system provides good similarity to the action spectrum of UV-induced erythema in human skin,” J. Photochem. Photobiol. B 37, 158–166 (1997).
[CrossRef] [PubMed]

L. E. Quintern, G. Horneck, U. Eschweiler, H. Bücker, “A biofilm used as ultraviolet dosimeter,” J. Photochem. Photobiol. 55, 389–395 (1992).

Ronto, G.

P. Grof, S. Gaspar, G. Ronto, “Use of uracil thin layer for measuring biologically effective dose,” J. Photochem. Photobiol. 64, 800–806 (1996).

G. Ronto, S. Gaspar, A. Berces, “Phages T7 in biological UV dose measurements,” J. Photochem. Photobiol. B 12, 285–294 (1992).
[CrossRef]

Saile, M.

M. Tevini, U. Mark, M. Saile, “Plant experiments in growth chamberse illuminated with natural sunlight,” in Environmental Research with Plants in Closed Chambers, H. D. Payer, T. Pfirrmann, P. Mathy, eds (Commission of the European Communities, Brussels, 1989), pp. 240–251.

Saunders, R. D.

K. D. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (1987).

Schoenen, D.

A. Cabaj, R. Sommer, D. Schoenen, “Biodosimetry: model calculations for UV water disinfection devices with regard to dose distributions,” Water Res. 4, 1003–1009 (1996).
[CrossRef]

Seckmeyer, G.

G. Horneck, G. Seckmeyer, P. C. Simon, “Biologically weighted dosimetry of solar UV radiation,” (DG XII/D, Brussels, 25September1996).

Seidlitz, H. K.

T. Döhring, M. Köfferlein, S. Thiel, H. K. Seidlitz, “Spectral shaping of artificial UV-B irradiation for vegetation stress research,” J. Plant Physiol. 148, 115–119 (1996).
[CrossRef]

Shimaru, H.

N. Munakata, N. Morohoshi, F. Hieda, K. Suzuki, K. Furusawa, H. Shimaru, T. Ito, “Experimental correspondence between spore dosimetry and spectral photometry of solar ultraviolet radiation,” J. Photochem. Photobiol. 63, 74–78 (1996).

Simon, P. C.

G. Horneck, G. Seckmeyer, P. C. Simon, “Biologically weighted dosimetry of solar UV radiation,” (DG XII/D, Brussels, 25September1996).

Sommer, R.

A. Cabaj, R. Sommer, D. Schoenen, “Biodosimetry: model calculations for UV water disinfection devices with regard to dose distributions,” Water Res. 4, 1003–1009 (1996).
[CrossRef]

Steeneken, S. F.

S. F. Steeneken, A. G. Buma, W. C. Gieskes, “Changes in transmission characteristics of polymethylmethacrylate and cellulose (III) acetate during exposure to ultraviolet light,” J. Photochem. Photobiol. 61, 276–280 (1995).

Suzuki, K.

N. Munakata, N. Morohoshi, F. Hieda, K. Suzuki, K. Furusawa, H. Shimaru, T. Ito, “Experimental correspondence between spore dosimetry and spectral photometry of solar ultraviolet radiation,” J. Photochem. Photobiol. 63, 74–78 (1996).

Terenetskaya, I. O.

O. N. Galkin, I. O. Terenetskaya, “Vitamin D biodosimeter: basic characteristics and prospect applications,” J. Photochem. Photobiol. B 53, 72–79 (1999).
[CrossRef]

Terenetskaya, I. P.

I. P. Terenetskaya, D. Gillotay, D. Bolsée, “Laboratory calibration of the vitamin D biodosimeter: examination of the model and correlation between biological and physical UV doses,” XXIV General Assembly of the EGS, The Hague, 19–23April1999, Abstracts Vol. 1, p. 478.

I. P. Terenetskaya, D. Bolsée, D. Gillotay, “Radiometric characterization and mathematical description of measuring effects in vitamin D biodosimeter,” in Proceedings of European Conference on Atmospheric UV Radiation (ECUV), Helsinki (Finnish Meterological Institute, Helsinki, Finland, 1998).

I. P. Terenetskaya, “Provitamin D photoiosomerization as possible UV-B monitor: kinetic study using a tunable dye laser,” in Ultraviolet Radiation Hazards, D. H. Sliney, M. Belkin, eds., Proc. SPIE2134B, 135–140 (1994).

Tevini, M.

M. Tevini, U. Mark, M. Saile, “Plant experiments in growth chamberse illuminated with natural sunlight,” in Environmental Research with Plants in Closed Chambers, H. D. Payer, T. Pfirrmann, P. Mathy, eds (Commission of the European Communities, Brussels, 1989), pp. 240–251.

Thiel, S.

T. Döhring, M. Köfferlein, S. Thiel, H. K. Seidlitz, “Spectral shaping of artificial UV-B irradiation for vegetation stress research,” J. Plant Physiol. 148, 115–119 (1996).
[CrossRef]

Walker, K. D.

K. D. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (1987).

Watanabe, M.

M. Watanabe, M. Furuya, Y. Miyoshi, Y. Inoue, I. Iwahashi, K. Matsumoto, “Design and performance of the Okasaki large spectrograph for photobiological research,” J. Photochem. Photobiol. 36, 491–498 (1982).

Watanabe, S.

N. Munakata, O. Masashi, S. Watanabe, “Monitoring of solar-UV exposure among school children in five Japanese cities using spore dosimeter and UV-coloring labels,” Jpn. J. Cancer Res. 89, 235–245 (1998).
[CrossRef] [PubMed]

Webb, A. R.

A. R. Webb, “Measuring UV radiation: a discussion of dosimeter properties, uses, and limitations,” J. Photochem. Photobiol. B 31, 9–13 (1995).
[CrossRef]

Experentia (1)

E. Havinga, “Vitamin D, example and challenge,” Experentia 29, 1181–1193 (1973).
[CrossRef]

J. Photochem. Photobiol. (6)

L. E. Quintern, G. Horneck, U. Eschweiler, H. Bücker, “A biofilm used as ultraviolet dosimeter,” J. Photochem. Photobiol. 55, 389–395 (1992).

P. Grof, S. Gaspar, G. Ronto, “Use of uracil thin layer for measuring biologically effective dose,” J. Photochem. Photobiol. 64, 800–806 (1996).

N. Munakata, N. Morohoshi, F. Hieda, K. Suzuki, K. Furusawa, H. Shimaru, T. Ito, “Experimental correspondence between spore dosimetry and spectral photometry of solar ultraviolet radiation,” J. Photochem. Photobiol. 63, 74–78 (1996).

T. P. Coohill, “Action spectra again?” J. Photochem. Photobiol. 54, 859–870 (1990).

M. Watanabe, M. Furuya, Y. Miyoshi, Y. Inoue, I. Iwahashi, K. Matsumoto, “Design and performance of the Okasaki large spectrograph for photobiological research,” J. Photochem. Photobiol. 36, 491–498 (1982).

S. F. Steeneken, A. G. Buma, W. C. Gieskes, “Changes in transmission characteristics of polymethylmethacrylate and cellulose (III) acetate during exposure to ultraviolet light,” J. Photochem. Photobiol. 61, 276–280 (1995).

J. Photochem. Photobiol. B (6)

L. E. Quintern, Y. Furusawa, K. Fukutsu, H. Holtschmidt, “Characterization and application of UV detector spore films: the sensitivity curve of a new detector system provides good similarity to the action spectrum of UV-induced erythema in human skin,” J. Photochem. Photobiol. B 37, 158–166 (1997).
[CrossRef] [PubMed]

G. Ronto, S. Gaspar, A. Berces, “Phages T7 in biological UV dose measurements,” J. Photochem. Photobiol. B 12, 285–294 (1992).
[CrossRef]

T. P. Coohill, “Action spectra revisited,” J. Photochem. Photobiol. B 13, 95–98 (1992).
[CrossRef] [PubMed]

A. R. Webb, “Measuring UV radiation: a discussion of dosimeter properties, uses, and limitations,” J. Photochem. Photobiol. B 31, 9–13 (1995).
[CrossRef]

P. Knuschke, J. Barth, “Biologically weighted personal UV dosimetry,” J. Photochem. Photobiol. B 36, 77–83 (1996).
[CrossRef] [PubMed]

O. N. Galkin, I. O. Terenetskaya, “Vitamin D biodosimeter: basic characteristics and prospect applications,” J. Photochem. Photobiol. B 53, 72–79 (1999).
[CrossRef]

J. Plant Physiol. (1)

T. Döhring, M. Köfferlein, S. Thiel, H. K. Seidlitz, “Spectral shaping of artificial UV-B irradiation for vegetation stress research,” J. Plant Physiol. 148, 115–119 (1996).
[CrossRef]

Jpn. J. Cancer Res. (1)

N. Munakata, O. Masashi, S. Watanabe, “Monitoring of solar-UV exposure among school children in five Japanese cities using spore dosimeter and UV-coloring labels,” Jpn. J. Cancer Res. 89, 235–245 (1998).
[CrossRef] [PubMed]

Nature (London) (1)

A. Davis, G. H. W. Deane, B. L. Diffey, “Possible dosimeter for UV radiation,” Nature (London) 261, 169–170 (1976).
[CrossRef]

Radiat. Prot. Dosim. (2)

A. Krins, B. Dörschel, J. Henniger, P. Knuschke, A. Bais, “Readings of polysulphone film after fractionated and continuous exposures to UV radiation and consequences for the calculation of the reading resulting form polychromatic UV radiation,” Radiat. Prot. Dosim. 83, 303–308 (1999).
[CrossRef]

A. Krins, B. Dörschel, J. Henniger, P. Knuschke: “Mathematical description of the reading in personal UV dosimeters taking polysulphone film as an example,” Radiat. Prot. Dosim. 78, 195–204 (1998).
[CrossRef]

Water Res. (1)

A. Cabaj, R. Sommer, D. Schoenen, “Biodosimetry: model calculations for UV water disinfection devices with regard to dose distributions,” Water Res. 4, 1003–1009 (1996).
[CrossRef]

XXIV General Assembly of the EGS (1)

I. P. Terenetskaya, D. Gillotay, D. Bolsée, “Laboratory calibration of the vitamin D biodosimeter: examination of the model and correlation between biological and physical UV doses,” XXIV General Assembly of the EGS, The Hague, 19–23April1999, Abstracts Vol. 1, p. 478.

Other (8)

G. Horneck, “Biological UV dosimeters,” in The Effects of Ozone Depletion on Aquatic Ecosystems, Environmental Intelligence Unit Series, D. P. Halder, ed., (R. G. Landes Company and Academic, Austin, Tex., 1997), pp. 119–142.

I. P. Terenetskaya, D. Bolsée, D. Gillotay, “Radiometric characterization and mathematical description of measuring effects in vitamin D biodosimeter,” in Proceedings of European Conference on Atmospheric UV Radiation (ECUV), Helsinki (Finnish Meterological Institute, Helsinki, Finland, 1998).

I. P. Terenetskaya, “Provitamin D photoiosomerization as possible UV-B monitor: kinetic study using a tunable dye laser,” in Ultraviolet Radiation Hazards, D. H. Sliney, M. Belkin, eds., Proc. SPIE2134B, 135–140 (1994).

K. D. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (1987).

M. Tevini, U. Mark, M. Saile, “Plant experiments in growth chamberse illuminated with natural sunlight,” in Environmental Research with Plants in Closed Chambers, H. D. Payer, T. Pfirrmann, P. Mathy, eds (Commission of the European Communities, Brussels, 1989), pp. 240–251.

A. Krins, D. Bolsée, B. Dörschel, D. Gillotay, P. Knuschke, “Angular dependence of the efficiency of the UV sensor polysulphone film,” Radiat. Prot. Dosim. (in press).

G. Horneck, G. Seckmeyer, P. C. Simon, “Biologically weighted dosimetry of solar UV radiation,” (DG XII/D, Brussels, 25September1996).

G. Horneck, “Development of biological dosimetry systems for monitoring the impact of solar UVB radiation on the biosphere and on human health,” (DG XII/D, Brussels, March1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Comparison between the spectra produced by a 1000-W xenon arc lamp and common standards of spectral irradiance.

Fig. 2
Fig. 2

Schematic diagram of the complete BIODOS facility for the characterization of biodosimeters.

Fig. 3
Fig. 3

(a) Short-term noise (4–5% peak to peak) and long-term trend observed for an unstabilized Xe arc lamp. (b) The same lamp stabilized by a photofeedback system (no trend and short-term noise reduced to ∼3% peak to peak).

Fig. 4
Fig. 4

Slit function of the double monochromator Spex Model 1672 measured at 632.8 nm with a He–Ne laser beam.

Fig. 5
Fig. 5

Resulting spectral irradiances provided by the narrow-band interference filter set for determination of the biodosimeter action spectrum.

Fig. 6
Fig. 6

Resulting spectral irradiances provided by neutral-density filters for the determination of biodosimeter linearity. Optical densities: reference (1) OD = 0, (2) OD = 0.36, (3) OD = 0.62, (4) OD = 0.93, (5) OD = 1.28, (6) OD = 1.52, (7) OD = 1.95, (8) OD = 2.30.

Fig. 7
Fig. 7

Examples of the resulting spectral irradiance produced by the beam conjoiner for exploring potential waveband interactions in the UV: (a) broadband UVA filter (combination of Schott filter Models WG345 and UG11 with thicknesses of 3 and 1 mm, respectively) and UVB filter (special interference filter made from Schott UG5 material and dielectric coating, manufactured by SFIM-ODS, France) are combined together. (b) A narrow-bandpass filter is combined with another UVA broadband filter (Schott filter Models WG335, 3 mm, and UG11, 1 mm).

Fig. 8
Fig. 8

Comparison between the experimental data obtained with the narrow-band filters and the calculated action spectrum of a D-biodosimeter.

Fig. 9
Fig. 9

Angular response of polysulphone film for monochromatic UV radiation at 320 nm and polychromatic radiation, both at low detector readings.

Tables (1)

Tables Icon

Table 1 Required Physical and Erythemal Doses to Achieve 5% Accumulation of Provitamin D for Six Wavelengths

Metrics