Abstract

Ag–TiO2 nanocermet thin films, deposited for optical filtering applications by two sputtering techniques, codeposition and multilayer deposition, exhibit surface plasmon absorption in the spectral range 450–500 nm. The cosputtering technique induces a columnar growth, whereas multilayer deposition produces a more-random distribution of silver inclusions. Both films have large, flat silver grains at the air–cermet interface. An optical double-heterogeneous layer model based on the experimental morphological parameters of the films accounts well for their experimental transmittance, notably for extra absorption near 700 nm, which is attributed to a surface plasmon in the flat silver grains of the surface.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Sella, M. Mâaza, B. Pardo, F. Dunsteter, J. C. Martin, M. C. Sainte Catherine, “Microstructure and growth mechanism of Pt–Al2O3 co-sputtered nanocermet films studied by SAXS, TEM and AFM,” Physica A 241, 192–198 (1997).
    [CrossRef]
  2. M. H. Lee, I. T. H. Chang, P. J. Dobson, B. Cantor, “Microstructural characterization of nanocomposite thin films of Ag–SiO2, Ag–ZnO and Ag–Si,” Mater. Sci. Eng. A179/A180, 545–551 (1994).
    [CrossRef]
  3. M. Gajdardziska-Josifovska, R. C. McPhedran, D. R. McKenzie, R. E. Collins, “Silver–magnesium fluoride cermet films. 1. Preparation and microstructure,” Appl. Opt. 28, 2736–2743 (1989).
    [CrossRef] [PubMed]
  4. G. A. Niklasson, C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co–Al2O3 composite films,” J. Appl. Phys. 55, 3382–3410 (1984).
    [CrossRef]
  5. N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
    [CrossRef]
  6. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385–420 (1904).
    [CrossRef]
  7. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).
    [CrossRef]
  8. C. J. F. Böttcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1973), pp. 79–81.
  9. S. Berthier, Optique des Milieux Composites (Polytechnica, Paris, 1993), pp. 188–191.
  10. F. Abelès, “Optics of thin films,” in Advanced Optical Techniques, A. C. S. Van Heel, ed. (Van Heel, Amsterdam, 1967), pp. 145–188.
  11. A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sella, “Optical study of Ag–TiO2 nanocermet thin films prepared by rf cosputtering,” Eur. Phys. J. Appl. Phys. (to be published).
  12. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), pp. 795–804.
  13. B. R. Weinberger, R. B. Garber, “Titanium dioxide photocatalysts produced by reactive magnetron sputtering,” Appl. Phys. Lett. 66, 2409–2411 (1995).
    [CrossRef]
  14. P. Löbl, M. Huppertz, D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72–79 (1994).
    [CrossRef]

1997

N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
[CrossRef]

C. Sella, M. Mâaza, B. Pardo, F. Dunsteter, J. C. Martin, M. C. Sainte Catherine, “Microstructure and growth mechanism of Pt–Al2O3 co-sputtered nanocermet films studied by SAXS, TEM and AFM,” Physica A 241, 192–198 (1997).
[CrossRef]

1995

B. R. Weinberger, R. B. Garber, “Titanium dioxide photocatalysts produced by reactive magnetron sputtering,” Appl. Phys. Lett. 66, 2409–2411 (1995).
[CrossRef]

1994

P. Löbl, M. Huppertz, D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72–79 (1994).
[CrossRef]

M. H. Lee, I. T. H. Chang, P. J. Dobson, B. Cantor, “Microstructural characterization of nanocomposite thin films of Ag–SiO2, Ag–ZnO and Ag–Si,” Mater. Sci. Eng. A179/A180, 545–551 (1994).
[CrossRef]

1989

1984

G. A. Niklasson, C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co–Al2O3 composite films,” J. Appl. Phys. 55, 3382–3410 (1984).
[CrossRef]

1935

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).
[CrossRef]

1904

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385–420 (1904).
[CrossRef]

Abd-Lefdil, M.

A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sella, “Optical study of Ag–TiO2 nanocermet thin films prepared by rf cosputtering,” Eur. Phys. J. Appl. Phys. (to be published).

Abelès, F.

F. Abelès, “Optics of thin films,” in Advanced Optical Techniques, A. C. S. Van Heel, ed. (Van Heel, Amsterdam, 1967), pp. 145–188.

Berthier, S.

S. Berthier, Optique des Milieux Composites (Polytechnica, Paris, 1993), pp. 188–191.

Böttcher, C. J. F.

C. J. F. Böttcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1973), pp. 79–81.

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).
[CrossRef]

Cantor, B.

M. H. Lee, I. T. H. Chang, P. J. Dobson, B. Cantor, “Microstructural characterization of nanocomposite thin films of Ag–SiO2, Ag–ZnO and Ag–Si,” Mater. Sci. Eng. A179/A180, 545–551 (1994).
[CrossRef]

Chang, I. T. H.

M. H. Lee, I. T. H. Chang, P. J. Dobson, B. Cantor, “Microstructural characterization of nanocomposite thin films of Ag–SiO2, Ag–ZnO and Ag–Si,” Mater. Sci. Eng. A179/A180, 545–551 (1994).
[CrossRef]

Collins, R. E.

Dakka, A.

A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sella, “Optical study of Ag–TiO2 nanocermet thin films prepared by rf cosputtering,” Eur. Phys. J. Appl. Phys. (to be published).

Dobson, P. J.

M. H. Lee, I. T. H. Chang, P. J. Dobson, B. Cantor, “Microstructural characterization of nanocomposite thin films of Ag–SiO2, Ag–ZnO and Ag–Si,” Mater. Sci. Eng. A179/A180, 545–551 (1994).
[CrossRef]

Dunsteter, F.

C. Sella, M. Mâaza, B. Pardo, F. Dunsteter, J. C. Martin, M. C. Sainte Catherine, “Microstructure and growth mechanism of Pt–Al2O3 co-sputtered nanocermet films studied by SAXS, TEM and AFM,” Physica A 241, 192–198 (1997).
[CrossRef]

Gajdardziska-Josifovska, M.

Garber, R. B.

B. R. Weinberger, R. B. Garber, “Titanium dioxide photocatalysts produced by reactive magnetron sputtering,” Appl. Phys. Lett. 66, 2409–2411 (1995).
[CrossRef]

Granqvist, C. G.

G. A. Niklasson, C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co–Al2O3 composite films,” J. Appl. Phys. 55, 3382–3410 (1984).
[CrossRef]

Huppertz, M.

P. Löbl, M. Huppertz, D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72–79 (1994).
[CrossRef]

Lafait, J.

A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sella, “Optical study of Ag–TiO2 nanocermet thin films prepared by rf cosputtering,” Eur. Phys. J. Appl. Phys. (to be published).

Lee, M. H.

M. H. Lee, I. T. H. Chang, P. J. Dobson, B. Cantor, “Microstructural characterization of nanocomposite thin films of Ag–SiO2, Ag–ZnO and Ag–Si,” Mater. Sci. Eng. A179/A180, 545–551 (1994).
[CrossRef]

Löbl, P.

P. Löbl, M. Huppertz, D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72–79 (1994).
[CrossRef]

Mâaza, M.

C. Sella, M. Mâaza, B. Pardo, F. Dunsteter, J. C. Martin, M. C. Sainte Catherine, “Microstructure and growth mechanism of Pt–Al2O3 co-sputtered nanocermet films studied by SAXS, TEM and AFM,” Physica A 241, 192–198 (1997).
[CrossRef]

Martin, J. C.

C. Sella, M. Mâaza, B. Pardo, F. Dunsteter, J. C. Martin, M. C. Sainte Catherine, “Microstructure and growth mechanism of Pt–Al2O3 co-sputtered nanocermet films studied by SAXS, TEM and AFM,” Physica A 241, 192–198 (1997).
[CrossRef]

Martin, N.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
[CrossRef]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385–420 (1904).
[CrossRef]

McKenzie, D. R.

McPhedran, R. C.

Mercier, R.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
[CrossRef]

Mergel, D.

P. Löbl, M. Huppertz, D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72–79 (1994).
[CrossRef]

Niklasson, G. A.

G. A. Niklasson, C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co–Al2O3 composite films,” J. Appl. Phys. 55, 3382–3410 (1984).
[CrossRef]

Palmino, F.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
[CrossRef]

Pardo, B.

C. Sella, M. Mâaza, B. Pardo, F. Dunsteter, J. C. Martin, M. C. Sainte Catherine, “Microstructure and growth mechanism of Pt–Al2O3 co-sputtered nanocermet films studied by SAXS, TEM and AFM,” Physica A 241, 192–198 (1997).
[CrossRef]

Rondot, D.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
[CrossRef]

Rousselot, C.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
[CrossRef]

Sainte Catherine, M. C.

C. Sella, M. Mâaza, B. Pardo, F. Dunsteter, J. C. Martin, M. C. Sainte Catherine, “Microstructure and growth mechanism of Pt–Al2O3 co-sputtered nanocermet films studied by SAXS, TEM and AFM,” Physica A 241, 192–198 (1997).
[CrossRef]

Sella, C.

C. Sella, M. Mâaza, B. Pardo, F. Dunsteter, J. C. Martin, M. C. Sainte Catherine, “Microstructure and growth mechanism of Pt–Al2O3 co-sputtered nanocermet films studied by SAXS, TEM and AFM,” Physica A 241, 192–198 (1997).
[CrossRef]

A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sella, “Optical study of Ag–TiO2 nanocermet thin films prepared by rf cosputtering,” Eur. Phys. J. Appl. Phys. (to be published).

Weinberger, B. R.

B. R. Weinberger, R. B. Garber, “Titanium dioxide photocatalysts produced by reactive magnetron sputtering,” Appl. Phys. Lett. 66, 2409–2411 (1995).
[CrossRef]

Ann. Phys. (Leipzig)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

B. R. Weinberger, R. B. Garber, “Titanium dioxide photocatalysts produced by reactive magnetron sputtering,” Appl. Phys. Lett. 66, 2409–2411 (1995).
[CrossRef]

J. Appl. Phys.

G. A. Niklasson, C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co–Al2O3 composite films,” J. Appl. Phys. 55, 3382–3410 (1984).
[CrossRef]

Mater. Sci. Eng.

M. H. Lee, I. T. H. Chang, P. J. Dobson, B. Cantor, “Microstructural characterization of nanocomposite thin films of Ag–SiO2, Ag–ZnO and Ag–Si,” Mater. Sci. Eng. A179/A180, 545–551 (1994).
[CrossRef]

Philos. Trans. R. Soc. London

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385–420 (1904).
[CrossRef]

Physica A

C. Sella, M. Mâaza, B. Pardo, F. Dunsteter, J. C. Martin, M. C. Sainte Catherine, “Microstructure and growth mechanism of Pt–Al2O3 co-sputtered nanocermet films studied by SAXS, TEM and AFM,” Physica A 241, 192–198 (1997).
[CrossRef]

Thin Solid Films

N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films 300, 113–121 (1997).
[CrossRef]

P. Löbl, M. Huppertz, D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72–79 (1994).
[CrossRef]

Other

C. J. F. Böttcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1973), pp. 79–81.

S. Berthier, Optique des Milieux Composites (Polytechnica, Paris, 1993), pp. 188–191.

F. Abelès, “Optics of thin films,” in Advanced Optical Techniques, A. C. S. Van Heel, ed. (Van Heel, Amsterdam, 1967), pp. 145–188.

A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sella, “Optical study of Ag–TiO2 nanocermet thin films prepared by rf cosputtering,” Eur. Phys. J. Appl. Phys. (to be published).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Orlando, Fla., 1985), pp. 795–804.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

(a) TiO2 target, covered with a hexagonal array of Ag disks, used for deposition of Ag–TiO2 nanocermet thin films by cosputtering. (b) TiO2 target covered with a Ag triangular sector for the deposition of Ag–TiO2 multilayers.

Fig. 2
Fig. 2

Transmittance T, reflectance R, and absorptance A spectra of a TiO2 thin film with a thickness of 150 nm deposited on a SiO2 substrate.

Fig. 3
Fig. 3

Refractive index n and extinction coefficient k of TiO2 determined from the spectrophotometric measurements of Fig. 2.

Fig. 4
Fig. 4

Electron diffraction pattern of a TiO2 thin film with a thickness of 150 nm.

Fig. 5
Fig. 5

TEM bright-field image of a Ag–TiO2 cermet thin film with a thickness of 120 nm and a Ag volume fraction of 4%.

Fig. 6
Fig. 6

Electron diffraction pattern of a Ag–TiO2 cermet thin film with a thickness of 120 nm and a Ag volume fraction of 4%.

Fig. 7
Fig. 7

(a) AFM image and (b) profile of a Ag–TiO2 cermet thin film with a thickness of 53.5 nm and a Ag volume fraction of 15%.

Fig. 8
Fig. 8

SIMS depth profile of a Ag–TiO2 cermet thin film with a thickness of 53.5 nm and a Ag volume fraction of 15% deposited on a Si substrate with a Cs primary ion beam.

Fig. 9
Fig. 9

Transmittance T, reflectance R, and absorptance A spectra for a Ag–TiO2 cermet thin film with a thickness of 53.5 nm and a Ag volume fraction of 15%.

Fig. 10
Fig. 10

Structure of the model used to simulate our Ag–TiO2 cermet films.

Fig. 11
Fig. 11

Experimental and simulated curves of the T spectrum, from the model of Fig. 10, of the Ag–TiO2 cermet thin film.

Fig. 12
Fig. 12

Electron diffraction pattern of a Ag–TiO2 multilayer consisting of 12 bilayers with a total thickness of 30 nm and a Ag volume fraction of 25%.

Fig. 13
Fig. 13

TEM bright-field image of a Ag–TiO2 multilayer consisting of 12 bilayers with a total thickness of 30 nm and a Ag volume fraction of 25%.

Fig. 14
Fig. 14

(a) AFM image and (b) profile of a Ag–TiO2 multilayer consisting of 12 bilayers with a total thickness of 30 nm and a Ag volume fraction of 25%.

Fig. 15
Fig. 15

Transmittance T, reflectance R, and absorptance A spectra of a Ag–TiO2 multilayer consisting of 12 bilayers with a total thickness of 30 nm and a Ag volume fraction of 25% deposited on a glass substrate.

Fig. 16
Fig. 16

Experimental and simulated curves of the transmittance spectrum, from the model of Fig. 10, of the Ag–TiO2 multilayer.

Tables (2)

Tables Icon

Table 1 Morphological Parameters of the Ag–TiO2 Nanocermet Thin Film Prepared by Cosputteringa

Tables Icon

Table 2 Morphological Parameters of the Ag–TiO2 Multilayera

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

εMG-εmLεMG+1-Lεm=piεi-εmLεi+1-Lεm,
La=1-e22e3ln1+e1-e-2e,  e=1-b2a21/2,
La=1+e2e3e-arctan e,  e=c2a2-11/2,
εiω=P-ωp2ωω+i/τ,
1τ=1τ0+vFr,

Metrics