Abstract

We measured the refractive-index change on a liquid sample, using the reflection of a polarized Gaussian laser beam close to the angle of total reflection. We applied this technique to a solution of nickel (ii) phthalocyanine tetrasulfonated (NiPTS) in water–ethanol (1/1 v/v), in which the nonlinearity of the refractive index is due to optically induced thermal effects. We show that close to the angle of total reflection the sensitivity of this technique is four times bigger than at normal incidence.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Bialkowski, Photothermal Spectroscopy for Chemical Analysis (Wiley, New York, 1996), Vol. 134.
  2. N. J. Dovichi, J. M. Harris, “Laser-induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51, 728–731 (1979).
    [CrossRef]
  3. H. Saito, M. Irikura, M. Haraguchi, M. Fukui, “New type of photothermal spectroscopic technique,” Appl. Opt. 31, 2047–2054 (1992).
    [CrossRef] [PubMed]
  4. J. W. Fang, S. Y. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B 67, 633–639 (1998).
    [CrossRef]
  5. H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998).
    [CrossRef]
  6. Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 294–304 (1995).
  7. D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
    [CrossRef]
  8. D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, “Reflection of a Gaussian beam from a saturable absorber,” Opt. Commun. 123, 637–641 (1996).
    [CrossRef]
  9. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1959).
  10. M. Martinelli, S. Bian, J. R. Leite, R. J. Horowicz, “Sensitivity-enhanced reflection Z-scan by oblique incidence of a polarized beam,” Appl. Phys. Lett. 72, 1427–1429 (1998).
    [CrossRef]
  11. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  12. D. V. Petrov, “Reflection Z-scan technique for the study of nonlinear refraction and absorption of a single interface and thin film,” J. Opt. Soc. Am. B 13, 1491–1498 (1996).
    [CrossRef]
  13. N. J. Dovichi, “Thermooptics spectrophotometries in analytical chemistry,” Crit. Rev. Anal. Chem. 17, 357–423 (1987).
    [CrossRef]
  14. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
    [CrossRef]

1998

J. W. Fang, S. Y. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B 67, 633–639 (1998).
[CrossRef]

H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998).
[CrossRef]

M. Martinelli, S. Bian, J. R. Leite, R. J. Horowicz, “Sensitivity-enhanced reflection Z-scan by oblique incidence of a polarized beam,” Appl. Phys. Lett. 72, 1427–1429 (1998).
[CrossRef]

1996

D. V. Petrov, “Reflection Z-scan technique for the study of nonlinear refraction and absorption of a single interface and thin film,” J. Opt. Soc. Am. B 13, 1491–1498 (1996).
[CrossRef]

D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, “Reflection of a Gaussian beam from a saturable absorber,” Opt. Commun. 123, 637–641 (1996).
[CrossRef]

1994

D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
[CrossRef]

1992

1990

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1987

N. J. Dovichi, “Thermooptics spectrophotometries in analytical chemistry,” Crit. Rev. Anal. Chem. 17, 357–423 (1987).
[CrossRef]

1979

N. J. Dovichi, J. M. Harris, “Laser-induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51, 728–731 (1979).
[CrossRef]

1965

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Bialkowski, S. E.

S. E. Bialkowski, Photothermal Spectroscopy for Chemical Analysis (Wiley, New York, 1996), Vol. 134.

Bian, S.

M. Martinelli, S. Bian, J. R. Leite, R. J. Horowicz, “Sensitivity-enhanced reflection Z-scan by oblique incidence of a polarized beam,” Appl. Phys. Lett. 72, 1427–1429 (1998).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1959).

de Araújo, C. B.

D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, “Reflection of a Gaussian beam from a saturable absorber,” Opt. Commun. 123, 637–641 (1996).
[CrossRef]

D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
[CrossRef]

Dovichi, N. J.

N. J. Dovichi, “Thermooptics spectrophotometries in analytical chemistry,” Crit. Rev. Anal. Chem. 17, 357–423 (1987).
[CrossRef]

N. J. Dovichi, J. M. Harris, “Laser-induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51, 728–731 (1979).
[CrossRef]

Fang, J. W.

J. W. Fang, S. Y. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B 67, 633–639 (1998).
[CrossRef]

Fukui, M.

Gomes, A. S. L.

D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, “Reflection of a Gaussian beam from a saturable absorber,” Opt. Commun. 123, 637–641 (1996).
[CrossRef]

D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
[CrossRef]

Gordon, J. P.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Gu, S. T.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 294–304 (1995).

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Haraguchi, M.

Harris, J. M.

N. J. Dovichi, J. M. Harris, “Laser-induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51, 728–731 (1979).
[CrossRef]

Horowicz, R. J.

M. Martinelli, S. Bian, J. R. Leite, R. J. Horowicz, “Sensitivity-enhanced reflection Z-scan by oblique incidence of a polarized beam,” Appl. Phys. Lett. 72, 1427–1429 (1998).
[CrossRef]

Inoue, T.

H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998).
[CrossRef]

Irikura, M.

Kaieda, T.

H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998).
[CrossRef]

Kawazumi, H.

H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998).
[CrossRef]

Kuo, P. K.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 294–304 (1995).

Leite, J. R.

M. Martinelli, S. Bian, J. R. Leite, R. J. Horowicz, “Sensitivity-enhanced reflection Z-scan by oblique incidence of a polarized beam,” Appl. Phys. Lett. 72, 1427–1429 (1998).
[CrossRef]

Leite, R. C. C.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Lu, Y. S.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 294–304 (1995).

Martinelli, M.

M. Martinelli, S. Bian, J. R. Leite, R. J. Horowicz, “Sensitivity-enhanced reflection Z-scan by oblique incidence of a polarized beam,” Appl. Phys. Lett. 72, 1427–1429 (1998).
[CrossRef]

Moore, R. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Ogawa, T.

H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998).
[CrossRef]

Petrov, D. V.

D. V. Petrov, “Reflection Z-scan technique for the study of nonlinear refraction and absorption of a single interface and thin film,” J. Opt. Soc. Am. B 13, 1491–1498 (1996).
[CrossRef]

D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, “Reflection of a Gaussian beam from a saturable absorber,” Opt. Commun. 123, 637–641 (1996).
[CrossRef]

D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
[CrossRef]

Porto, S. P. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Saito, H.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Whinnery, J. R.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1959).

Wu, Z. L.

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 294–304 (1995).

Zhang, S. Y.

J. W. Fang, S. Y. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B 67, 633–639 (1998).
[CrossRef]

Anal. Chem.

N. J. Dovichi, J. M. Harris, “Laser-induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51, 728–731 (1979).
[CrossRef]

Appl. Opt.

Appl. Phys. B

J. W. Fang, S. Y. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B 67, 633–639 (1998).
[CrossRef]

Appl. Phys. Lett.

D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
[CrossRef]

M. Martinelli, S. Bian, J. R. Leite, R. J. Horowicz, “Sensitivity-enhanced reflection Z-scan by oblique incidence of a polarized beam,” Appl. Phys. Lett. 72, 1427–1429 (1998).
[CrossRef]

Chem. Phys. Lett.

H. Kawazumi, T. Kaieda, T. Inoue, T. Ogawa, “Development of an interfacial thermal lens technique: monitoring the dissolving process of amphiphilic molecules at the hexane–water interface,” Chem. Phys. Lett. 282, 159–163 (1998).
[CrossRef]

Crit. Rev. Anal. Chem.

N. J. Dovichi, “Thermooptics spectrophotometries in analytical chemistry,” Crit. Rev. Anal. Chem. 17, 357–423 (1987).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Appl. Phys.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

D. V. Petrov, A. S. L. Gomes, C. B. de Araújo, “Reflection of a Gaussian beam from a saturable absorber,” Opt. Commun. 123, 637–641 (1996).
[CrossRef]

Other

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1959).

Z. L. Wu, P. K. Kuo, Y. S. Lu, S. T. Gu, “Laser-induced surface thermal lensing for thin film characterizations” in 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2714, 294–304 (1995).

S. E. Bialkowski, Photothermal Spectroscopy for Chemical Analysis (Wiley, New York, 1996), Vol. 134.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup for tilted incidence measurements. M, mirror; SH, shutter; L, lens; P, prism; D, detector.

Fig. 2
Fig. 2

Reflected power variation as a function of sample position, for an incidence angle of 61.8° (prism–sample interface).

Fig. 3
Fig. 3

Time evolution of the reflected power.

Fig. 4
Fig. 4

Angular dependence of the variation in the normalized reflected power, close to the critical angle θ c .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

rθ, ñ2=ñ22 cos θ-ñ1ñ22-ñ12 sin2 θ1/2ñ22 cos θ+ñ1ñ22-ñ12 sin2 θ1/2,
rn=rn01+drdnΔnrn0.
Iz=I01+12drdnReΔn0rz02z2+z02,
It=I1+tc/2t-1.

Metrics