Abstract

We present a geometrical model of atomic topography with which to obtain a quantitative assessment of surface roughness. A series of two- and three-dimensional atomic surface roughness equations with sufficiently realistic parameters is developed to permit quantitative comparison with scanning-tunneling microscope and atomic-force microscope (AFM) experimental results. The model is sufficiently simple that one can easily use it to interpret experimental data. Tables are provided with estimated values for two- and three-dimensional rms atomic surface roughness in pure metal crystals and ionic crystals based on the atomic surface roughness equations. We use these roughness equations to determine the roughness of cleaved muscovite mica [essentially, KAl2(OH)2Si3AlO10]; the calculated values for both two- and three-dimensional roughness are consistent with those obtained in our AFM measurements. In addition, we demonstrate both theoretically and experimentally that atomic surface roughness is never zero.

© 2000 Optical Society of America

Full Article  |  PDF Article
Related Articles
Scanning tunneling microscopy applied to optical surfaces

R. A. Dragoset, R. D. Young, H. P. Layer, S. R. Mielczarek, E. C. Teague, and R. J. Celotta
Opt. Lett. 11(9) 560-562 (1986)

Deconvolution of local surface response from topography in nanometer profilometry with a dual-scan method

Chao-Wei Tsai, Chau-Hwang Lee, and Jyhpyng Wang
Opt. Lett. 24(23) 1732-1734 (1999)

Stylus profiling at high resolution and low force

J. F. Song and Theodore V. Vorburger
Appl. Opt. 30(1) 42-50 (1991)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription