Abstract

We present a programmable array microscope that uses a ferroelectric liquid-crystal spatial light modulator (SLM) for dynamic generation of scanning apertures. A single SLM serves as both the source and the detector aperture array in a double-pass confocal system. Successive aperture frames scan the array across the viewing area for complete imaging of a sample while preserving depth discrimination. Integration of the microscope output across all aperture frames produces a confocal image.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, Confocal Microscopy (Academic, London, 1990).
  2. D. T. Fewer, S. J. Hewlett, E. M. McCabe, J. Hegarty, “Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration,” J. Microsc. 187, 54–61 (1997).
    [CrossRef]
  3. M. Petran, M. Hadravsky, M. D. Egger, R. Galambos, “Tandem-scanning reflected-light microscope,” J. Opt. Soc. Am. 58, 90–93 (1968).
    [CrossRef]
  4. IBM Corporation, “Electronically scanned confocal imaging system,” IBM Tech. Discl. Bull. 36, 261–262 (1993).
  5. P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. 189, 192–198 (1998).
    [CrossRef]
  6. M. Liang, R. L. Stehr, A. W. Krause, “Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination,” Opt. Lett. 22, 751–753 (1997).
    [CrossRef] [PubMed]
  7. Q. S. Hanley, P. J. Verveer, T. M. Jovin, “Spectral imaging in a programmable array microscope by Hadamard transform fluorescence spectroscopy,” Appl. Spectros. 53, 1–10 (1999).
    [CrossRef]
  8. Displaytech, Inc., SLM Developer Kit User’s Manual (Displaytech Inc., 2602 Clover Basin Drive, Longmont, Colo., 1997).
  9. G. Bader, R. Buerkle, E. Lueder, N. Fruehauf, C. Zeile, “Fast and accurate techniques for measuring the complex transmittance of liquid crystal light valves,” in Liquid Crystal Materials, Devices, and Applications V, R. Shashidhar, ed., Proc. SPIE3015, 93–104 (1997).
    [CrossRef]
  10. Q. S. Hanley, P. J. Verveer, M. L. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (2000).
    [CrossRef]

2000 (1)

Q. S. Hanley, P. J. Verveer, M. L. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (2000).
[CrossRef]

1999 (1)

Q. S. Hanley, P. J. Verveer, T. M. Jovin, “Spectral imaging in a programmable array microscope by Hadamard transform fluorescence spectroscopy,” Appl. Spectros. 53, 1–10 (1999).
[CrossRef]

1998 (1)

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. 189, 192–198 (1998).
[CrossRef]

1997 (2)

M. Liang, R. L. Stehr, A. W. Krause, “Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination,” Opt. Lett. 22, 751–753 (1997).
[CrossRef] [PubMed]

D. T. Fewer, S. J. Hewlett, E. M. McCabe, J. Hegarty, “Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration,” J. Microsc. 187, 54–61 (1997).
[CrossRef]

1993 (1)

IBM Corporation, “Electronically scanned confocal imaging system,” IBM Tech. Discl. Bull. 36, 261–262 (1993).

1968 (1)

Arndt-Jovin, D.

Q. S. Hanley, P. J. Verveer, M. L. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (2000).
[CrossRef]

Bader, G.

G. Bader, R. Buerkle, E. Lueder, N. Fruehauf, C. Zeile, “Fast and accurate techniques for measuring the complex transmittance of liquid crystal light valves,” in Liquid Crystal Materials, Devices, and Applications V, R. Shashidhar, ed., Proc. SPIE3015, 93–104 (1997).
[CrossRef]

Buerkle, R.

G. Bader, R. Buerkle, E. Lueder, N. Fruehauf, C. Zeile, “Fast and accurate techniques for measuring the complex transmittance of liquid crystal light valves,” in Liquid Crystal Materials, Devices, and Applications V, R. Shashidhar, ed., Proc. SPIE3015, 93–104 (1997).
[CrossRef]

Egger, M. D.

Fewer, D. T.

D. T. Fewer, S. J. Hewlett, E. M. McCabe, J. Hegarty, “Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration,” J. Microsc. 187, 54–61 (1997).
[CrossRef]

Fruehauf, N.

G. Bader, R. Buerkle, E. Lueder, N. Fruehauf, C. Zeile, “Fast and accurate techniques for measuring the complex transmittance of liquid crystal light valves,” in Liquid Crystal Materials, Devices, and Applications V, R. Shashidhar, ed., Proc. SPIE3015, 93–104 (1997).
[CrossRef]

Galambos, R.

Gemkow, M. L.

Q. S. Hanley, P. J. Verveer, M. L. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (2000).
[CrossRef]

Hadravsky, M.

Hanley, Q. S.

Q. S. Hanley, P. J. Verveer, M. L. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (2000).
[CrossRef]

Q. S. Hanley, P. J. Verveer, T. M. Jovin, “Spectral imaging in a programmable array microscope by Hadamard transform fluorescence spectroscopy,” Appl. Spectros. 53, 1–10 (1999).
[CrossRef]

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. 189, 192–198 (1998).
[CrossRef]

Hegarty, J.

D. T. Fewer, S. J. Hewlett, E. M. McCabe, J. Hegarty, “Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration,” J. Microsc. 187, 54–61 (1997).
[CrossRef]

Hewlett, S. J.

D. T. Fewer, S. J. Hewlett, E. M. McCabe, J. Hegarty, “Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration,” J. Microsc. 187, 54–61 (1997).
[CrossRef]

Jovin, T. M.

Q. S. Hanley, P. J. Verveer, M. L. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (2000).
[CrossRef]

Q. S. Hanley, P. J. Verveer, T. M. Jovin, “Spectral imaging in a programmable array microscope by Hadamard transform fluorescence spectroscopy,” Appl. Spectros. 53, 1–10 (1999).
[CrossRef]

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. 189, 192–198 (1998).
[CrossRef]

Krause, A. W.

Liang, M.

Lueder, E.

G. Bader, R. Buerkle, E. Lueder, N. Fruehauf, C. Zeile, “Fast and accurate techniques for measuring the complex transmittance of liquid crystal light valves,” in Liquid Crystal Materials, Devices, and Applications V, R. Shashidhar, ed., Proc. SPIE3015, 93–104 (1997).
[CrossRef]

McCabe, E. M.

D. T. Fewer, S. J. Hewlett, E. M. McCabe, J. Hegarty, “Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration,” J. Microsc. 187, 54–61 (1997).
[CrossRef]

Petran, M.

Stehr, R. L.

van Vliet, L. J.

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. 189, 192–198 (1998).
[CrossRef]

Verbeek, P. W.

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. 189, 192–198 (1998).
[CrossRef]

Verveer, P. J.

Q. S. Hanley, P. J. Verveer, M. L. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (2000).
[CrossRef]

Q. S. Hanley, P. J. Verveer, T. M. Jovin, “Spectral imaging in a programmable array microscope by Hadamard transform fluorescence spectroscopy,” Appl. Spectros. 53, 1–10 (1999).
[CrossRef]

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. 189, 192–198 (1998).
[CrossRef]

Wilson, T.

T. Wilson, Confocal Microscopy (Academic, London, 1990).

Zeile, C.

G. Bader, R. Buerkle, E. Lueder, N. Fruehauf, C. Zeile, “Fast and accurate techniques for measuring the complex transmittance of liquid crystal light valves,” in Liquid Crystal Materials, Devices, and Applications V, R. Shashidhar, ed., Proc. SPIE3015, 93–104 (1997).
[CrossRef]

Appl. Spectros. (1)

Q. S. Hanley, P. J. Verveer, T. M. Jovin, “Spectral imaging in a programmable array microscope by Hadamard transform fluorescence spectroscopy,” Appl. Spectros. 53, 1–10 (1999).
[CrossRef]

IBM Tech. Discl. Bull. (1)

IBM Corporation, “Electronically scanned confocal imaging system,” IBM Tech. Discl. Bull. 36, 261–262 (1993).

J. Microsc. (3)

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. 189, 192–198 (1998).
[CrossRef]

D. T. Fewer, S. J. Hewlett, E. M. McCabe, J. Hegarty, “Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration,” J. Microsc. 187, 54–61 (1997).
[CrossRef]

Q. S. Hanley, P. J. Verveer, M. L. Gemkow, D. Arndt-Jovin, T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196, 317–331 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Other (3)

T. Wilson, Confocal Microscopy (Academic, London, 1990).

Displaytech, Inc., SLM Developer Kit User’s Manual (Displaytech Inc., 2602 Clover Basin Drive, Longmont, Colo., 1997).

G. Bader, R. Buerkle, E. Lueder, N. Fruehauf, C. Zeile, “Fast and accurate techniques for measuring the complex transmittance of liquid crystal light valves,” in Liquid Crystal Materials, Devices, and Applications V, R. Shashidhar, ed., Proc. SPIE3015, 93–104 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

PAM system, showing the reflective FLC SLM in its off-axis orientation.

Fig. 2
Fig. 2

Transmission of a FLC modulator against incidence angle.

Fig. 3
Fig. 3

Light paths through a double-pass SLM system and their fate with polarizers set as in Fig. 1.

Fig. 4
Fig. 4

Four frames of a 4:1 spaced set of 2 × 2 pixel apertures in a 8 × 8 array. There are 16 frames in all for full coverage.

Fig. 5
Fig. 5

Captured images of a silicon VLSI sample scanned axially through the PAM focus. The sample area is approximately 200 µm × 200 µm. (a)–(d) show confocal images at progressive axial positions, spaced 2 µm apart. Sample features become highlighted as they move through focus.

Fig. 6
Fig. 6

Relationship of FWHM, background, and dynamic range in an axial resolution measurement.

Fig. 7
Fig. 7

Measured axial resolution of the PAM with various single-pixel aperture spacings.

Tables (1)

Tables Icon

Table 1 Measured Axial Resolution and Useful Response Range of the PAM for Single-Pixel Aperture Arrays of Varying Spacing

Metrics