Abstract

A confocal microscope profilometer, which incorporates chromatic depth scanning with a diffractive optical element and a digital micromirror device for configurable transverse scanning, provides three-dimensional (3D) quantitative measurements without mechanical translation of either the sample or the microscope. We used a microscope with various objective lenses (e.g., 40×, 60×, and 100×) to achieve different system characteristics. With a 100× objective, the microscope acquires stable measurements over a 320 µm × 240 µm surface area with a depth resolution of 0.39 µm at a 3-Hz scan rate. The total longitudinal field of view is 26.4 µm for a wavelength tuning range of 48.3 nm. The FWHM value of the longitudinal point-spread function is measured to be 0.99 µm. We present 3D measurements of a four-phase-level diffractive element and an integrated-circuit chip. The resolution and the accuracy are shown to be equivalent to those found with use of conventional mechanical scanning.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (19December1961).
  2. D. K. Hamilton, T. Wilson, C. J. R. Sheppard, “Experimental observations of depth-discrimination properties of scanning microscopes,” Opt. Lett. 6, 625–626 (1981).
    [CrossRef] [PubMed]
  3. T. Wilson, S. J. Hewlett, “Superresolution in confocal scanning microscopy,” Opt. Lett. 16, 1062–1064 (1991).
    [CrossRef] [PubMed]
  4. J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum, New York, 1989).
  5. D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211–213 (1982).
    [CrossRef]
  6. T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  7. G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
    [CrossRef]
  8. C. J. R. Sheppard, X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35, 1169–1185 (1988).
    [CrossRef]
  9. M. Liang, R. L. Stehr, A. W. Krause, “Confocal pattern period multiple-aperture confocal imaging system with coherent illumination,” Opt. Lett. 22, 751–753 (1997).
    [CrossRef] [PubMed]
  10. P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. Van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope,” J. Microsc. 189, 192–198 (1998).
    [CrossRef]
  11. Q. S. Hanly, P. J. Verveer, T. M. Jovin, “Optical sectioning fluorescence spectroscopy in a programmable array microscope,” Appl. Spectrosc. 52, 783–789 (1998).
    [CrossRef]
  12. S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, “3D profilometry using a dynamically configurable confocal microscope,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds., Proc. SPIE3640, 246–253 (1999).
  13. G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
    [CrossRef]
  14. M. A. Browne, O. Akinyemi, A. Boyde, “Confocal surface profiling using chromatic aberration,” Scanning 14, 145–153 (1992).
    [CrossRef]
  15. M. Maly, A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lens with linear longitudinal chromatic dispersion,” Scanning 16, 187–192 (1994).
  16. S. Dobson, P. C. Sun, Y. Fainman, “Diffractive lenses for chromatic confocal imaging,” Appl. Opt. 36, 4744–4748 (1997).
    [CrossRef] [PubMed]
  17. P. C. Lin, P. C. Sun, L. Zhu, Y. Fainman, “Single-shot depth-section imaging through chromatic slit-scan confocal microscopy,” Appl. Opt. 37, 6764–6770 (1998).
    [CrossRef]
  18. J. B. Sampsell, “Digital micromirror device and its application to projection displays,” J. Vac. Sci. Technol. B 12, 3242–3246 (1994).
    [CrossRef]

1998 (3)

1997 (2)

1994 (2)

J. B. Sampsell, “Digital micromirror device and its application to projection displays,” J. Vac. Sci. Technol. B 12, 3242–3246 (1994).
[CrossRef]

M. Maly, A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lens with linear longitudinal chromatic dispersion,” Scanning 16, 187–192 (1994).

1992 (1)

M. A. Browne, O. Akinyemi, A. Boyde, “Confocal surface profiling using chromatic aberration,” Scanning 14, 145–153 (1992).
[CrossRef]

1991 (1)

1988 (2)

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

C. J. R. Sheppard, X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35, 1169–1185 (1988).
[CrossRef]

1984 (1)

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

1982 (1)

D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211–213 (1982).
[CrossRef]

1981 (1)

Akinyemi, O.

M. A. Browne, O. Akinyemi, A. Boyde, “Confocal surface profiling using chromatic aberration,” Scanning 14, 145–153 (1992).
[CrossRef]

Botvinick, E. L.

S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, “3D profilometry using a dynamically configurable confocal microscope,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds., Proc. SPIE3640, 246–253 (1999).

Boyde, A.

M. Maly, A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lens with linear longitudinal chromatic dispersion,” Scanning 16, 187–192 (1994).

M. A. Browne, O. Akinyemi, A. Boyde, “Confocal surface profiling using chromatic aberration,” Scanning 14, 145–153 (1992).
[CrossRef]

Browne, M. A.

M. A. Browne, O. Akinyemi, A. Boyde, “Confocal surface profiling using chromatic aberration,” Scanning 14, 145–153 (1992).
[CrossRef]

Cha, S.

S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, “3D profilometry using a dynamically configurable confocal microscope,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds., Proc. SPIE3640, 246–253 (1999).

Corle, T. R.

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Dobson, S.

Fainman, Y.

P. C. Lin, P. C. Sun, L. Zhu, Y. Fainman, “Single-shot depth-section imaging through chromatic slit-scan confocal microscopy,” Appl. Opt. 37, 6764–6770 (1998).
[CrossRef]

S. Dobson, P. C. Sun, Y. Fainman, “Diffractive lenses for chromatic confocal imaging,” Appl. Opt. 36, 4744–4748 (1997).
[CrossRef] [PubMed]

S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, “3D profilometry using a dynamically configurable confocal microscope,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds., Proc. SPIE3640, 246–253 (1999).

Hamilton, D. K.

D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211–213 (1982).
[CrossRef]

D. K. Hamilton, T. Wilson, C. J. R. Sheppard, “Experimental observations of depth-discrimination properties of scanning microscopes,” Opt. Lett. 6, 625–626 (1981).
[CrossRef] [PubMed]

Hanley, Q. S.

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. Van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope,” J. Microsc. 189, 192–198 (1998).
[CrossRef]

Hanly, Q. S.

Hewlett, S. J.

Jovin, T. M.

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. Van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope,” J. Microsc. 189, 192–198 (1998).
[CrossRef]

Q. S. Hanly, P. J. Verveer, T. M. Jovin, “Optical sectioning fluorescence spectroscopy in a programmable array microscope,” Appl. Spectrosc. 52, 783–789 (1998).
[CrossRef]

Kino, G. S.

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Krause, A. W.

Liang, M.

Lin, P. C.

P. C. Lin, P. C. Sun, L. Zhu, Y. Fainman, “Single-shot depth-section imaging through chromatic slit-scan confocal microscopy,” Appl. Opt. 37, 6764–6770 (1998).
[CrossRef]

S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, “3D profilometry using a dynamically configurable confocal microscope,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds., Proc. SPIE3640, 246–253 (1999).

Maly, M.

M. Maly, A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lens with linear longitudinal chromatic dispersion,” Scanning 16, 187–192 (1994).

Mao, X. Q.

C. J. R. Sheppard, X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35, 1169–1185 (1988).
[CrossRef]

Minsky, M.

M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (19December1961).

Molesini, G.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Pawley, J. B.

J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum, New York, 1989).

Pedrini, G.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Poggi, P.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Quercioli, F.

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Sampsell, J. B.

J. B. Sampsell, “Digital micromirror device and its application to projection displays,” J. Vac. Sci. Technol. B 12, 3242–3246 (1994).
[CrossRef]

Sheppard, C.

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Sheppard, C. J. R.

Stehr, R. L.

Sun, P. C.

P. C. Lin, P. C. Sun, L. Zhu, Y. Fainman, “Single-shot depth-section imaging through chromatic slit-scan confocal microscopy,” Appl. Opt. 37, 6764–6770 (1998).
[CrossRef]

S. Dobson, P. C. Sun, Y. Fainman, “Diffractive lenses for chromatic confocal imaging,” Appl. Opt. 36, 4744–4748 (1997).
[CrossRef] [PubMed]

S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, “3D profilometry using a dynamically configurable confocal microscope,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds., Proc. SPIE3640, 246–253 (1999).

Van Vliet, L. J.

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. Van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope,” J. Microsc. 189, 192–198 (1998).
[CrossRef]

Verbeek, P. W.

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. Van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope,” J. Microsc. 189, 192–198 (1998).
[CrossRef]

Verveer, P. J.

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. Van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope,” J. Microsc. 189, 192–198 (1998).
[CrossRef]

Q. S. Hanly, P. J. Verveer, T. M. Jovin, “Optical sectioning fluorescence spectroscopy in a programmable array microscope,” Appl. Spectrosc. 52, 783–789 (1998).
[CrossRef]

Wilson, T.

T. Wilson, S. J. Hewlett, “Superresolution in confocal scanning microscopy,” Opt. Lett. 16, 1062–1064 (1991).
[CrossRef] [PubMed]

D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211–213 (1982).
[CrossRef]

D. K. Hamilton, T. Wilson, C. J. R. Sheppard, “Experimental observations of depth-discrimination properties of scanning microscopes,” Opt. Lett. 6, 625–626 (1981).
[CrossRef] [PubMed]

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Xiao, G. Q.

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Zhu, L.

P. C. Lin, P. C. Sun, L. Zhu, Y. Fainman, “Single-shot depth-section imaging through chromatic slit-scan confocal microscopy,” Appl. Opt. 37, 6764–6770 (1998).
[CrossRef]

S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, “3D profilometry using a dynamically configurable confocal microscope,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds., Proc. SPIE3640, 246–253 (1999).

Appl. Opt. (2)

Appl. Phys. B (1)

D. K. Hamilton, T. Wilson, “Three-dimensional surface measurement using the confocal scanning microscope,” Appl. Phys. B 27, 211–213 (1982).
[CrossRef]

Appl. Phys. Lett. (1)

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Appl. Spectrosc. (1)

J. Microsc. (1)

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. Van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope,” J. Microsc. 189, 192–198 (1998).
[CrossRef]

J. Mod. Opt. (1)

C. J. R. Sheppard, X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35, 1169–1185 (1988).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. B. Sampsell, “Digital micromirror device and its application to projection displays,” J. Vac. Sci. Technol. B 12, 3242–3246 (1994).
[CrossRef]

Opt. Commun. (1)

G. Molesini, G. Pedrini, P. Poggi, F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[CrossRef]

Opt. Lett. (3)

Scanning (2)

M. A. Browne, O. Akinyemi, A. Boyde, “Confocal surface profiling using chromatic aberration,” Scanning 14, 145–153 (1992).
[CrossRef]

M. Maly, A. Boyde, “Real-time stereoscopic confocal reflection microscopy using objective lens with linear longitudinal chromatic dispersion,” Scanning 16, 187–192 (1994).

Other (4)

S. Cha, P. C. Lin, L. Zhu, E. L. Botvinick, P. C. Sun, Y. Fainman, “3D profilometry using a dynamically configurable confocal microscope,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds., Proc. SPIE3640, 246–253 (1999).

J. B. Pawley, Handbook of Biological Confocal Microscopy (Plenum, New York, 1989).

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (19December1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of nontranslational, chromatic confocal microscope with diffractive lens and DMD. BS, beam splitter; MO, mirror object.

Fig. 2
Fig. 2

Experimental results of system characterization: wavelength-to-depth mapping for various microscope objectives.

Fig. 3
Fig. 3

Experimental results of measured longitudinal PSF: (a) mechanical stage-scanned confocal microscope operating at wavelength λ = 826.82 nm, (b) chromatic depth-scanned confocal microscope by tuning of the Ti:sapphire laser wavelength.

Fig. 4
Fig. 4

Experimental results of measuring a four-phase-level diffractive element with a 100× objective: (a) image of the diffractive element when the confocal plane is adjusted to the top surface (λ = 805.08 nm, corresponding to z = 1.35 µm) and (b) to the bottom surface (λ = 802.61 nm, z = 0 µm).

Fig. 5
Fig. 5

Experimental results of measuring a four-phase-level diffractive element with a 100× objective: (a) 3D mesh reconstruction from 14 consecutive chromatic-scanned confocal image planes (each image is taken with Δλ = 0.19 nm wavelength tuning, corresponding to Δz = 0.10 µm interval), (b) 3D mesh reconstruction from 14 consecutive mechanical stage-scanned confocal image planes (each image is taken with Δz = 0.1 µm interval), and (c) depth profile measured with a Dektak profilometer.

Fig. 6
Fig. 6

Experimental results of measuring the integrated-circuit chip (Rozier 10/95 Photonic SRAM) with a 100× objective: (a) image of the chip when the confocal plane is adjusted to the bottom surface (λ = 810.99 nm, z = 0 µm), (b) to the middle plane (λ = 813.09 nm, z = 1.15 µm from bottom), and (c) to the top surface (λ = 815.54 nm, z = 2.49 µm from bottom).

Fig. 7
Fig. 7

Experimental results of measuring the integrated-circuit chip (Rozier 10/95 Photonic SRAM) with a 100× objective: 3D profile rendering of the chip from 14 consecutive image planes (each image is taken with Δλ = 0.35 nm wavelength tuning) with depth position coded in gray scale.

Tables (1)

Tables Icon

Table 1 Comparison of Profile Measurements for Four-Phase-Level Diffractive Element

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

fλ2fλd-fλdλ/λd.
D40×μm=1585.41-1.8912λnm,
D60×μm=734.90-0.8762λnm,
D100×μm=458.80-0.547λnm.

Metrics