Abstract

A synchronous polarimeter was set up for the measurement of small rotation angles of the polarization plane of light. The polarimeter is based on a polarizer–Faraday modulator–analyzer structure with a synchronous detection scheme, which produces a linear system response. The theoretical background is studied, and the system performance is investigated experimentally. We achieved an accuracy of the order of 10-4 deg, or 5 mg/dl of glucose in a 1-cm light path.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitor of the aqueous humor of the eye. II. Animal studies and scleral lens,” Diabetes Care 5, 259–265 (1982).
    [CrossRef]
  2. C. Chou, C. Y. Han, W. C. Kuo, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt. 37, 3553–3557 (1998).
    [CrossRef]
  3. B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitor of the aqueous humor of the eye: I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
    [CrossRef] [PubMed]
  4. C. Chou, Y. C. Huang, C. M. Feng, M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997).
    [CrossRef]
  5. S. J. Williamson, J. M. Weingart, R. D. Andrews, “New high-precision photoelectric universal polarimeter and birefringence compensator,” J. Opt. Soc. Am. 54, 374–378 (1964).
    [CrossRef]
  6. Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
    [CrossRef]
  7. A. Papp, H. Harms, “Magnetooptical current transformer. 1. Principles,” Appl. Opt. 19, 3729–3734 (1980).
    [CrossRef] [PubMed]
  8. D. Motchenbacher, J. A. Connelly, Low-Noise Electronic System Design (Wiley, N.Y., 1993).
  9. M. L. Meade, Lock-In Amplifiers: Principles and Applications (Peter, London, 1983).

1998 (1)

1997 (1)

C. Chou, Y. C. Huang, C. M. Feng, M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997).
[CrossRef]

1995 (1)

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

1982 (2)

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitor of the aqueous humor of the eye. II. Animal studies and scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef]

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitor of the aqueous humor of the eye: I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

1980 (1)

1964 (1)

S. J. Williamson, J. M. Weingart, R. D. Andrews, “New high-precision photoelectric universal polarimeter and birefringence compensator,” J. Opt. Soc. Am. 54, 374–378 (1964).
[CrossRef]

Adams, R. L.

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitor of the aqueous humor of the eye. II. Animal studies and scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef]

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitor of the aqueous humor of the eye: I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

Andrews, R. D.

S. J. Williamson, J. M. Weingart, R. D. Andrews, “New high-precision photoelectric universal polarimeter and birefringence compensator,” J. Opt. Soc. Am. 54, 374–378 (1964).
[CrossRef]

Chang, M.

C. Chou, Y. C. Huang, C. M. Feng, M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997).
[CrossRef]

Chou, C.

C. Chou, C. Y. Han, W. C. Kuo, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt. 37, 3553–3557 (1998).
[CrossRef]

C. Chou, Y. C. Huang, C. M. Feng, M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997).
[CrossRef]

Connelly, J. A.

D. Motchenbacher, J. A. Connelly, Low-Noise Electronic System Design (Wiley, N.Y., 1993).

Feng, C. M.

C. Chou, Y. C. Huang, C. M. Feng, M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997).
[CrossRef]

Grattan, K. T. V.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Han, C. Y.

Harms, H.

Huang, Y. C.

C. Chou, Y. C. Huang, C. M. Feng, M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997).
[CrossRef]

Kuo, W. C.

March, W. F.

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitor of the aqueous humor of the eye: I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitor of the aqueous humor of the eye. II. Animal studies and scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef]

Meade, M. L.

M. L. Meade, Lock-In Amplifiers: Principles and Applications (Peter, London, 1983).

Motchenbacher, D.

D. Motchenbacher, J. A. Connelly, Low-Noise Electronic System Design (Wiley, N.Y., 1993).

Ning, Y. N.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Palmer, A. W.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Papp, A.

Rabinovitch, B.

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitor of the aqueous humor of the eye. II. Animal studies and scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef]

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitor of the aqueous humor of the eye: I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

Wang, Z. P.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Weingart, J. M.

S. J. Williamson, J. M. Weingart, R. D. Andrews, “New high-precision photoelectric universal polarimeter and birefringence compensator,” J. Opt. Soc. Am. 54, 374–378 (1964).
[CrossRef]

Williamson, S. J.

S. J. Williamson, J. M. Weingart, R. D. Andrews, “New high-precision photoelectric universal polarimeter and birefringence compensator,” J. Opt. Soc. Am. 54, 374–378 (1964).
[CrossRef]

Appl. Opt. (2)

Diabetes Care (2)

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitor of the aqueous humor of the eye. II. Animal studies and scleral lens,” Diabetes Care 5, 259–265 (1982).
[CrossRef]

B. Rabinovitch, W. F. March, R. L. Adams, “Noninvasive glucose monitor of the aqueous humor of the eye: I. Measurement of very small optical rotations,” Diabetes Care 5, 254–258 (1982).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

S. J. Williamson, J. M. Weingart, R. D. Andrews, “New high-precision photoelectric universal polarimeter and birefringence compensator,” J. Opt. Soc. Am. 54, 374–378 (1964).
[CrossRef]

Jpn. J. Appl. Phys. (1)

C. Chou, Y. C. Huang, C. M. Feng, M. Chang, “Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid,” Jpn. J. Appl. Phys. 36, 356–359 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Other (2)

D. Motchenbacher, J. A. Connelly, Low-Noise Electronic System Design (Wiley, N.Y., 1993).

M. L. Meade, Lock-In Amplifiers: Principles and Applications (Peter, London, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) System output as a function of modulation amplitude k. The output has a maximum at k ∼ 60 deg. (b) System output as a function of Δθ, with amplitude α kept constant. In practice we work with small α and Δθ so that the polarimeter output is in the linear zone.

Fig. 2
Fig. 2

Experimental setup. LD, laser diode; FM, Faraday modulator; OAM, optically active medium; P1,2, polarizer and analyzer; PD, photodetector; CS, current source; M, multiplier device (this device multiplies the current through the coil of the Faraday modulator by the signal from the photodetector); LPF, low-pass filter.

Fig. 3
Fig. 3

Polarimeter output as a function of the rotation angle (Δθ).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

It=I0 cos2θ0+Δθ+αt,
It=I021+cos2αtcos2θ0+Δθ-sin2αtsin2θ0+Δθ.
cos2k sinwt=J02k+2 n=- J2n2kcos(2nwt),
sin2k sinwt=2 n=- J2n+12ksin2n+1wt,
Itsinwt=I0/2J12ksin2θ0+Δθ,
Itsinwt=-I0J12kΔθ.
Itsinwt=Ac,
It=I02ta+2-ta-2tp+2-tp-2cos2θ0+Δθ+α+ta+2tp-2+tp+2ta-2,
SNR  It22S0Blp,

Metrics