Abstract

Laser-induced photofragmentation with fragment ionization is used to detect and spectrally differentiate trace concentrations of NO2 from NO in NO–NO2 mixtures. A laser operating near 226 or 452 nm ionizes the target molecules, and the resulting electrons are collected with miniature electrodes. NO is detected by (1 + 1) resonance-enhanced multiphoton ionization by means of its A 2Σ+X 2Π (0, 0) transitions near 226 nm, whereas NO2 is detected near 226 nm by laser photofragmentation with subsequent NO fragment ionization by means of both its A 2Σ+X 2Π (0, 0) and (1, 1) transitions. The NO fragment generated from the photolysis of NO2 is produced rovibrationally excited with a significant population in the first vibrational level of the ground electronic state (X 2Π, v″ = 1). In contrast, ambient NO has a room-temperature, Boltzmann population distribution favoring the lowest ground vibrational level (X 2Π, v″ = 0). Thus discrimination is possible when the internal energy distributions of both fragment NO and ambient NO are probed. We also demonstrate this approach using visible radiation, further simplifying the experimental apparatus because frequency doubling of the laser radiation is not required. We measured up to three decades of NO–NO2 mixtures with limits of detection (signal-to-noise ratio of 3) in the low parts per billion for both NO and NO2 for a 10-s integration time using both ultraviolet or visible radiation.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Simeonsson, R. C. Sausa, “Laser photofragmentation/fragment detection techniques for chemical analysis of the gas phase,” Trends Anal. Chem. 17(8, 9), 542–550 (1998), and references therein.
  2. J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996), and references therein.
    [CrossRef]
  3. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, L. J. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67(4), 433–441 (1998).
  4. H. J. Kolsch, P. Rairoux, J. P. Wolf, L. Woste, “Simultaneous NO and NO2 DIAL measurement using BBO crystals,” Appl. Opt. 28, 2052–2056 (1989).
    [CrossRef]
  5. M. Alden, H. Edner, S. Svanberg, “Laser monitoring of atmospheric NO using ultraviolet differential-absorption techniques,” Opt. Lett. 7, 543–545 (1982).
    [CrossRef] [PubMed]
  6. W. X. Peng, K. W. D. Leddingham, A. Marshall, R. P. Singhal, “Urban air-pollution monitoring: laser-based procedure for the detection of NOx gases,” Analyst (London) 120, 2537–2542 (1995).
    [CrossRef]
  7. J. Stenberg, R. Hernberg, J. Vattulainen, “Analysis of pollutant chemistry in combustion by in situ pulsed photoacoustic laser diagnostics,” Appl. Opt. 34, 8400–8408 (1995).
    [CrossRef] [PubMed]
  8. V. Swayambunathan, G. Singh, R. C. Sausa, “Laser-photofragmentation–fragment detection and laser-pyrolysis–laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447–6454 (1999).
    [CrossRef]
  9. D. Wu, J. Singh, F. Yueh, D. Monts, “2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
    [CrossRef] [PubMed]
  10. G. M. Boudreaux, T. S. Miller, A. J. Kunefke, J. P. Singh, F. Yueh, D. Monts, “Development of a photofragmentation laser-induced-fluorescence laser sensor for detection of 2,4,6-trinitrotoluene in soil and groundwater,” Appl. Opt. 38, 1411–1417 (1999).
    [CrossRef]
  11. G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
    [CrossRef]
  12. A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8(7), 521–526 (1994).
  13. G. E. Collins, S. L. Rosepehrsson, “Chemiluminescence chemical sensors for oxygen and nitrogen-dioxide,” Anal. Chem. 67, 2224–2230 (1995).
    [CrossRef]
  14. R. A. Robbins, A. A. Floreani, S. G. Von Essen, J. H. Sisson, G. E. Hill, I. Rubinstein, R. G. Townley, “Measurement of exhaled nitric oxide by three different techniques,” Am. J. Respir. Crit. Care Med. 153, 1631–1635 (1996).
    [CrossRef] [PubMed]
  15. M. Glasius, M. F. Carlsen, T. S. Hansen, C. Lohse, “Measurement of nitrogen dioxide on Funene using diffusion tubes,” Atmos. Environ. 33, 1177–1185 (1999).
    [CrossRef]
  16. S. Lee, J. Hirokawa, Y. Kajii, H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
    [CrossRef]
  17. T. Benter, M. Liesner, V. Sauerland, R. N. Schindler, “Mass-spectrometric in-situ determination of NO2 in gas-mixtures by resonance-enhanced multiphoton ionization,” Fresenius J. Anal. Chem. 351(6), 489–492 (1995).
  18. G. R. Kumar, D. Mathur, “Reply to comment on ‘On the ionization and dissociation of NO2 by short, intense laser pulses,’” Chem. Phys. Lett. 292, 647–650 (1998), and references therein.
  19. R. P. Singhal, H. S. Kilic, K. W. D. Ledingham, T. McCanny, W. X. Peng, D. J. Smith, C. Kosmidis, A. J. Langley, P. F. Taday, “Comment on the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 292, 643–650 (1998).
    [CrossRef]
  20. K. Vijaylakahmi, C. P. Safvan, G. R. Kumar, D. Mathur, “On the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 270(1–2), 37–44 (1997).
  21. J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.
  22. M. O. Rodgers, K. A. Asai, D. D. Davis, “Photofragmentation laser-induced fluorescence: a new method for detecting atmospheric trace gases,” Appl. Opt. 19, 3597–3605 (1980).
    [CrossRef] [PubMed]
  23. R. L. Pastel, R. C. Sausa, “Detection of NO and NO2 by (2 + 2) resonance-enhanced multiphoton ionization and photoacoustic spectroscopy near 454 nm,” Appl. Opt. 35, 4046–4052 (1996).
    [CrossRef] [PubMed]
  24. J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Laser-induced photofragmentation/photoionization spectrometry: a method for detecting ambient oxides of nitrogen,” Anal. Chem. 66, 2272–2278 (1994).
    [CrossRef]
  25. J. A. Last, W.-M. Sun, H. Witschi, “Ozone, NO, and NO2-oxidant air-pollutants and more,” Environ. Health Perspect. 102 (Suppl. 10), 179–184 (1994).
  26. J. B. Simeonsson, R. C. Sausa, “Trace analysis of NO2 in the presence of NO by laser photofragmentation/fragment photoionization spectrometry at visible wavelengths,” Appl. Spectros. 50, 1277–1282 (1996).
    [CrossRef]
  27. A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z. T. Cai, “Determination of nitrogen-dioxide in air compressed gas-mixtures by quantitative tunable diode-laser absorption spectrometry and chemiluminescence detection,” Anal. Chem. 60(5), 394–403 (1988).
  28. A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, D. E. Winstead, “Reference NO2 calibration system for ground-based intercomparison during NASAs GTE/CITE-2 mission,” J. Geophys. Res. D 95, 10,139–10,146 (1990).
    [CrossRef]
  29. H. Zacharias, R. Schmiedl, K. H. Welge, “State selective step-wise photoionization of NO with mass spectroscopic ion detection,” Appl. Phys. 21, 127–133 (1980).
    [CrossRef]
  30. L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the 2-photon excitation of NO2: the distinct dynamics of 2-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984), and references therein.
  31. R. J. S. Morrison, E. R. Grant, “Dynamics of the 2-photon photodissociation of NO2: a molecular multiphoton ionization study of NO photofragment internal energy-distributions,” J. Chem. Phys. 77, 5994–6004 (1982), and references therein.
    [CrossRef]
  32. R. J. S. Morrison, B. H. Rockney, E. R. Grant, “Multiphoton ionization of NO2: spectroscopy and dynamics,” J. Chem. Phys. 75, 2643–2651 (1981).
    [CrossRef]
  33. J. A. Vanderhoff, M. W. Teague, A. J. Kotlar, “Detection of temperature and NO concentrations through the dark zone of solid-propellant flames,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1915–1922.
  34. A. Henry, M. F. Le Moal, Ph. Cardinet, A. Valentin, “Overtone bands of 14N16O and determination of molecular constants,” J. Mol. Spectros. 70(1), 18–26 (1978).
  35. R. Engleman, P. E. Rouse, “The β and γ bands of nitric oxide observed during flash photolysis of nitrosyl chloride,” J. Mol. Spectros. 37, 240–251 (1971).
    [CrossRef]
  36. I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A 2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27(5), 483–492 (1982).
    [CrossRef]
  37. D. C. Jacobs, R. J. Madix, R. N. Zare, “Reduction of 1 + 1 resonance-enhanced MPI spectra to population-distributions: application to the NO (A 2Σ+ - X 2Π) system,” J. Chem. Phys. 85, 5469–5479 (1986).
    [CrossRef]
  38. J. C. Miler, R. N. Compton, “Multiphoton ionization studies of ultracold nitric-oxide,” J. Chem. Phys. 84, 675–683 (1986).
    [CrossRef]
  39. M. G. White, W. A. Chupka, M. Seaver, A. Woodward, S. D. Colson, “Resonant multiphoton of NO via the 2Σ+ state: photoelectron-spectra and angular distributions,” J. Chem. Phys. 80, 678–686 (1984).
    [CrossRef]

1999

V. Swayambunathan, G. Singh, R. C. Sausa, “Laser-photofragmentation–fragment detection and laser-pyrolysis–laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447–6454 (1999).
[CrossRef]

G. M. Boudreaux, T. S. Miller, A. J. Kunefke, J. P. Singh, F. Yueh, D. Monts, “Development of a photofragmentation laser-induced-fluorescence laser sensor for detection of 2,4,6-trinitrotoluene in soil and groundwater,” Appl. Opt. 38, 1411–1417 (1999).
[CrossRef]

M. Glasius, M. F. Carlsen, T. S. Hansen, C. Lohse, “Measurement of nitrogen dioxide on Funene using diffusion tubes,” Atmos. Environ. 33, 1177–1185 (1999).
[CrossRef]

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

1998

G. R. Kumar, D. Mathur, “Reply to comment on ‘On the ionization and dissociation of NO2 by short, intense laser pulses,’” Chem. Phys. Lett. 292, 647–650 (1998), and references therein.

R. P. Singhal, H. S. Kilic, K. W. D. Ledingham, T. McCanny, W. X. Peng, D. J. Smith, C. Kosmidis, A. J. Langley, P. F. Taday, “Comment on the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 292, 643–650 (1998).
[CrossRef]

J. B. Simeonsson, R. C. Sausa, “Laser photofragmentation/fragment detection techniques for chemical analysis of the gas phase,” Trends Anal. Chem. 17(8, 9), 542–550 (1998), and references therein.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, L. J. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67(4), 433–441 (1998).

1997

K. Vijaylakahmi, C. P. Safvan, G. R. Kumar, D. Mathur, “On the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 270(1–2), 37–44 (1997).

S. Lee, J. Hirokawa, Y. Kajii, H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
[CrossRef]

1996

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996), and references therein.
[CrossRef]

D. Wu, J. Singh, F. Yueh, D. Monts, “2,4,6-Trinitrotoluene detection by laser-photofragmentation–laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
[CrossRef] [PubMed]

R. L. Pastel, R. C. Sausa, “Detection of NO and NO2 by (2 + 2) resonance-enhanced multiphoton ionization and photoacoustic spectroscopy near 454 nm,” Appl. Opt. 35, 4046–4052 (1996).
[CrossRef] [PubMed]

J. B. Simeonsson, R. C. Sausa, “Trace analysis of NO2 in the presence of NO by laser photofragmentation/fragment photoionization spectrometry at visible wavelengths,” Appl. Spectros. 50, 1277–1282 (1996).
[CrossRef]

R. A. Robbins, A. A. Floreani, S. G. Von Essen, J. H. Sisson, G. E. Hill, I. Rubinstein, R. G. Townley, “Measurement of exhaled nitric oxide by three different techniques,” Am. J. Respir. Crit. Care Med. 153, 1631–1635 (1996).
[CrossRef] [PubMed]

1995

W. X. Peng, K. W. D. Leddingham, A. Marshall, R. P. Singhal, “Urban air-pollution monitoring: laser-based procedure for the detection of NOx gases,” Analyst (London) 120, 2537–2542 (1995).
[CrossRef]

J. Stenberg, R. Hernberg, J. Vattulainen, “Analysis of pollutant chemistry in combustion by in situ pulsed photoacoustic laser diagnostics,” Appl. Opt. 34, 8400–8408 (1995).
[CrossRef] [PubMed]

T. Benter, M. Liesner, V. Sauerland, R. N. Schindler, “Mass-spectrometric in-situ determination of NO2 in gas-mixtures by resonance-enhanced multiphoton ionization,” Fresenius J. Anal. Chem. 351(6), 489–492 (1995).

G. E. Collins, S. L. Rosepehrsson, “Chemiluminescence chemical sensors for oxygen and nitrogen-dioxide,” Anal. Chem. 67, 2224–2230 (1995).
[CrossRef]

1994

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8(7), 521–526 (1994).

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Laser-induced photofragmentation/photoionization spectrometry: a method for detecting ambient oxides of nitrogen,” Anal. Chem. 66, 2272–2278 (1994).
[CrossRef]

J. A. Last, W.-M. Sun, H. Witschi, “Ozone, NO, and NO2-oxidant air-pollutants and more,” Environ. Health Perspect. 102 (Suppl. 10), 179–184 (1994).

1993

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

1990

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, D. E. Winstead, “Reference NO2 calibration system for ground-based intercomparison during NASAs GTE/CITE-2 mission,” J. Geophys. Res. D 95, 10,139–10,146 (1990).
[CrossRef]

1989

1988

A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z. T. Cai, “Determination of nitrogen-dioxide in air compressed gas-mixtures by quantitative tunable diode-laser absorption spectrometry and chemiluminescence detection,” Anal. Chem. 60(5), 394–403 (1988).

1986

D. C. Jacobs, R. J. Madix, R. N. Zare, “Reduction of 1 + 1 resonance-enhanced MPI spectra to population-distributions: application to the NO (A 2Σ+ - X 2Π) system,” J. Chem. Phys. 85, 5469–5479 (1986).
[CrossRef]

J. C. Miler, R. N. Compton, “Multiphoton ionization studies of ultracold nitric-oxide,” J. Chem. Phys. 84, 675–683 (1986).
[CrossRef]

1984

M. G. White, W. A. Chupka, M. Seaver, A. Woodward, S. D. Colson, “Resonant multiphoton of NO via the 2Σ+ state: photoelectron-spectra and angular distributions,” J. Chem. Phys. 80, 678–686 (1984).
[CrossRef]

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the 2-photon excitation of NO2: the distinct dynamics of 2-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984), and references therein.

1982

R. J. S. Morrison, E. R. Grant, “Dynamics of the 2-photon photodissociation of NO2: a molecular multiphoton ionization study of NO photofragment internal energy-distributions,” J. Chem. Phys. 77, 5994–6004 (1982), and references therein.
[CrossRef]

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A 2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27(5), 483–492 (1982).
[CrossRef]

M. Alden, H. Edner, S. Svanberg, “Laser monitoring of atmospheric NO using ultraviolet differential-absorption techniques,” Opt. Lett. 7, 543–545 (1982).
[CrossRef] [PubMed]

1981

R. J. S. Morrison, B. H. Rockney, E. R. Grant, “Multiphoton ionization of NO2: spectroscopy and dynamics,” J. Chem. Phys. 75, 2643–2651 (1981).
[CrossRef]

1980

H. Zacharias, R. Schmiedl, K. H. Welge, “State selective step-wise photoionization of NO with mass spectroscopic ion detection,” Appl. Phys. 21, 127–133 (1980).
[CrossRef]

M. O. Rodgers, K. A. Asai, D. D. Davis, “Photofragmentation laser-induced fluorescence: a new method for detecting atmospheric trace gases,” Appl. Opt. 19, 3597–3605 (1980).
[CrossRef] [PubMed]

1978

A. Henry, M. F. Le Moal, Ph. Cardinet, A. Valentin, “Overtone bands of 14N16O and determination of molecular constants,” J. Mol. Spectros. 70(1), 18–26 (1978).

1971

R. Engleman, P. E. Rouse, “The β and γ bands of nitric oxide observed during flash photolysis of nitrosyl chloride,” J. Mol. Spectros. 37, 240–251 (1971).
[CrossRef]

Akimoto, H.

S. Lee, J. Hirokawa, Y. Kajii, H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
[CrossRef]

Alden, M.

Asai, K. A.

Benter, T.

T. Benter, M. Liesner, V. Sauerland, R. N. Schindler, “Mass-spectrometric in-situ determination of NO2 in gas-mixtures by resonance-enhanced multiphoton ionization,” Fresenius J. Anal. Chem. 351(6), 489–492 (1995).

Bigio, L.

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the 2-photon excitation of NO2: the distinct dynamics of 2-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984), and references therein.

Blake, D.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

Boudreaux, G. M.

Bradshaw, J.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

Cadoff, B.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, D. E. Winstead, “Reference NO2 calibration system for ground-based intercomparison during NASAs GTE/CITE-2 mission,” J. Geophys. Res. D 95, 10,139–10,146 (1990).
[CrossRef]

Cai, Z. T.

A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z. T. Cai, “Determination of nitrogen-dioxide in air compressed gas-mixtures by quantitative tunable diode-laser absorption spectrometry and chemiluminescence detection,” Anal. Chem. 60(5), 394–403 (1988).

Cardinet, Ph.

A. Henry, M. F. Le Moal, Ph. Cardinet, A. Valentin, “Overtone bands of 14N16O and determination of molecular constants,” J. Mol. Spectros. 70(1), 18–26 (1978).

Carlsen, M. F.

M. Glasius, M. F. Carlsen, T. S. Hansen, C. Lohse, “Measurement of nitrogen dioxide on Funene using diffusion tubes,” Atmos. Environ. 33, 1177–1185 (1999).
[CrossRef]

Chen, G.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

Chupka, W. A.

M. G. White, W. A. Chupka, M. Seaver, A. Woodward, S. D. Colson, “Resonant multiphoton of NO via the 2Σ+ state: photoelectron-spectra and angular distributions,” J. Chem. Phys. 80, 678–686 (1984).
[CrossRef]

Clark, A.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8(7), 521–526 (1994).

Collins, G. E.

G. E. Collins, S. L. Rosepehrsson, “Chemiluminescence chemical sensors for oxygen and nitrogen-dioxide,” Anal. Chem. 67, 2224–2230 (1995).
[CrossRef]

Colson, S. D.

M. G. White, W. A. Chupka, M. Seaver, A. Woodward, S. D. Colson, “Resonant multiphoton of NO via the 2Σ+ state: photoelectron-spectra and angular distributions,” J. Chem. Phys. 80, 678–686 (1984).
[CrossRef]

Compton, R. N.

J. C. Miler, R. N. Compton, “Multiphoton ionization studies of ultracold nitric-oxide,” J. Chem. Phys. 84, 675–683 (1986).
[CrossRef]

Crawford, J.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

Davis, D.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

Davis, D. D.

Deas, R. M.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8(7), 521–526 (1994).

Dickerson, R.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, D. E. Winstead, “Reference NO2 calibration system for ground-based intercomparison during NASAs GTE/CITE-2 mission,” J. Geophys. Res. D 95, 10,139–10,146 (1990).
[CrossRef]

Dorko, W.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, D. E. Winstead, “Reference NO2 calibration system for ground-based intercomparison during NASAs GTE/CITE-2 mission,” J. Geophys. Res. D 95, 10,139–10,146 (1990).
[CrossRef]

A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z. T. Cai, “Determination of nitrogen-dioxide in air compressed gas-mixtures by quantitative tunable diode-laser absorption spectrometry and chemiluminescence detection,” Anal. Chem. 60(5), 394–403 (1988).

Edner, H.

Elkins, J. W.

A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z. T. Cai, “Determination of nitrogen-dioxide in air compressed gas-mixtures by quantitative tunable diode-laser absorption spectrometry and chemiluminescence detection,” Anal. Chem. 60(5), 394–403 (1988).

Engleman, R.

R. Engleman, P. E. Rouse, “The β and γ bands of nitric oxide observed during flash photolysis of nitrosyl chloride,” J. Mol. Spectros. 37, 240–251 (1971).
[CrossRef]

Floreani, A. A.

R. A. Robbins, A. A. Floreani, S. G. Von Essen, J. H. Sisson, G. E. Hill, I. Rubinstein, R. G. Townley, “Measurement of exhaled nitric oxide by three different techniques,” Am. J. Respir. Crit. Care Med. 153, 1631–1635 (1996).
[CrossRef] [PubMed]

Fried, A.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, D. E. Winstead, “Reference NO2 calibration system for ground-based intercomparison during NASAs GTE/CITE-2 mission,” J. Geophys. Res. D 95, 10,139–10,146 (1990).
[CrossRef]

A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z. T. Cai, “Determination of nitrogen-dioxide in air compressed gas-mixtures by quantitative tunable diode-laser absorption spectrometry and chemiluminescence detection,” Anal. Chem. 60(5), 394–403 (1988).

Glasius, M.

M. Glasius, M. F. Carlsen, T. S. Hansen, C. Lohse, “Measurement of nitrogen dioxide on Funene using diffusion tubes,” Atmos. Environ. 33, 1177–1185 (1999).
[CrossRef]

Grant, E. R.

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the 2-photon excitation of NO2: the distinct dynamics of 2-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984), and references therein.

R. J. S. Morrison, E. R. Grant, “Dynamics of the 2-photon photodissociation of NO2: a molecular multiphoton ionization study of NO photofragment internal energy-distributions,” J. Chem. Phys. 77, 5994–6004 (1982), and references therein.
[CrossRef]

R. J. S. Morrison, B. H. Rockney, E. R. Grant, “Multiphoton ionization of NO2: spectroscopy and dynamics,” J. Chem. Phys. 75, 2643–2651 (1981).
[CrossRef]

Gregory, G.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

Hansen, T. S.

M. Glasius, M. F. Carlsen, T. S. Hansen, C. Lohse, “Measurement of nitrogen dioxide on Funene using diffusion tubes,” Atmos. Environ. 33, 1177–1185 (1999).
[CrossRef]

Heikes, B.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

Henry, A.

A. Henry, M. F. Le Moal, Ph. Cardinet, A. Valentin, “Overtone bands of 14N16O and determination of molecular constants,” J. Mol. Spectros. 70(1), 18–26 (1978).

Hernberg, R.

Hill, G. E.

R. A. Robbins, A. A. Floreani, S. G. Von Essen, J. H. Sisson, G. E. Hill, I. Rubinstein, R. G. Townley, “Measurement of exhaled nitric oxide by three different techniques,” Am. J. Respir. Crit. Care Med. 153, 1631–1635 (1996).
[CrossRef] [PubMed]

Hirokawa, J.

S. Lee, J. Hirokawa, Y. Kajii, H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
[CrossRef]

Jacobs, D. C.

D. C. Jacobs, R. J. Madix, R. N. Zare, “Reduction of 1 + 1 resonance-enhanced MPI spectra to population-distributions: application to the NO (A 2Σ+ - X 2Π) system,” J. Chem. Phys. 85, 5469–5479 (1986).
[CrossRef]

Jimenez, L. J.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, L. J. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67(4), 433–441 (1998).

Kajii, Y.

S. Lee, J. Hirokawa, Y. Kajii, H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
[CrossRef]

Kilic, H. S.

R. P. Singhal, H. S. Kilic, K. W. D. Ledingham, T. McCanny, W. X. Peng, D. J. Smith, C. Kosmidis, A. J. Langley, P. F. Taday, “Comment on the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 292, 643–650 (1998).
[CrossRef]

Kolb, C. E.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, L. J. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67(4), 433–441 (1998).

Kolsch, H. J.

Kosmidis, C.

R. P. Singhal, H. S. Kilic, K. W. D. Ledingham, T. McCanny, W. X. Peng, D. J. Smith, C. Kosmidis, A. J. Langley, P. F. Taday, “Comment on the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 292, 643–650 (1998).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8(7), 521–526 (1994).

Kotlar, A. J.

J. A. Vanderhoff, M. W. Teague, A. J. Kotlar, “Detection of temperature and NO concentrations through the dark zone of solid-propellant flames,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1915–1922.

Kumar, G. R.

G. R. Kumar, D. Mathur, “Reply to comment on ‘On the ionization and dissociation of NO2 by short, intense laser pulses,’” Chem. Phys. Lett. 292, 647–650 (1998), and references therein.

K. Vijaylakahmi, C. P. Safvan, G. R. Kumar, D. Mathur, “On the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 270(1–2), 37–44 (1997).

Kunefke, A. J.

Langley, A. J.

R. P. Singhal, H. S. Kilic, K. W. D. Ledingham, T. McCanny, W. X. Peng, D. J. Smith, C. Kosmidis, A. J. Langley, P. F. Taday, “Comment on the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 292, 643–650 (1998).
[CrossRef]

Last, J. A.

J. A. Last, W.-M. Sun, H. Witschi, “Ozone, NO, and NO2-oxidant air-pollutants and more,” Environ. Health Perspect. 102 (Suppl. 10), 179–184 (1994).

Laudenslager, J. B.

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A 2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27(5), 483–492 (1982).
[CrossRef]

Le Moal, M. F.

A. Henry, M. F. Le Moal, Ph. Cardinet, A. Valentin, “Overtone bands of 14N16O and determination of molecular constants,” J. Mol. Spectros. 70(1), 18–26 (1978).

Leddingham, K. W. D.

W. X. Peng, K. W. D. Leddingham, A. Marshall, R. P. Singhal, “Urban air-pollution monitoring: laser-based procedure for the detection of NOx gases,” Analyst (London) 120, 2537–2542 (1995).
[CrossRef]

Ledingham, K. W. D.

R. P. Singhal, H. S. Kilic, K. W. D. Ledingham, T. McCanny, W. X. Peng, D. J. Smith, C. Kosmidis, A. J. Langley, P. F. Taday, “Comment on the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 292, 643–650 (1998).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8(7), 521–526 (1994).

Lee, S.

S. Lee, J. Hirokawa, Y. Kajii, H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
[CrossRef]

Lemire, G. W.

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Laser-induced photofragmentation/photoionization spectrometry: a method for detecting ambient oxides of nitrogen,” Anal. Chem. 66, 2272–2278 (1994).
[CrossRef]

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

Liesner, M.

T. Benter, M. Liesner, V. Sauerland, R. N. Schindler, “Mass-spectrometric in-situ determination of NO2 in gas-mixtures by resonance-enhanced multiphoton ionization,” Fresenius J. Anal. Chem. 351(6), 489–492 (1995).

Lohse, C.

M. Glasius, M. F. Carlsen, T. S. Hansen, C. Lohse, “Measurement of nitrogen dioxide on Funene using diffusion tubes,” Atmos. Environ. 33, 1177–1185 (1999).
[CrossRef]

Madix, R. J.

D. C. Jacobs, R. J. Madix, R. N. Zare, “Reduction of 1 + 1 resonance-enhanced MPI spectra to population-distributions: application to the NO (A 2Σ+ - X 2Π) system,” J. Chem. Phys. 85, 5469–5479 (1986).
[CrossRef]

Marshall, A.

W. X. Peng, K. W. D. Leddingham, A. Marshall, R. P. Singhal, “Urban air-pollution monitoring: laser-based procedure for the detection of NOx gases,” Analyst (London) 120, 2537–2542 (1995).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8(7), 521–526 (1994).

Mastromarino, J.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

Mathur, D.

G. R. Kumar, D. Mathur, “Reply to comment on ‘On the ionization and dissociation of NO2 by short, intense laser pulses,’” Chem. Phys. Lett. 292, 647–650 (1998), and references therein.

K. Vijaylakahmi, C. P. Safvan, G. R. Kumar, D. Mathur, “On the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 270(1–2), 37–44 (1997).

McCanny, T.

R. P. Singhal, H. S. Kilic, K. W. D. Ledingham, T. McCanny, W. X. Peng, D. J. Smith, C. Kosmidis, A. J. Langley, P. F. Taday, “Comment on the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 292, 643–650 (1998).
[CrossRef]

McDermid, I. S.

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A 2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27(5), 483–492 (1982).
[CrossRef]

McManus, J. B.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, L. J. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67(4), 433–441 (1998).

Miler, J. C.

J. C. Miler, R. N. Compton, “Multiphoton ionization studies of ultracold nitric-oxide,” J. Chem. Phys. 84, 675–683 (1986).
[CrossRef]

Miller, T. S.

Monts, D.

Morrison, R. J. S.

R. J. S. Morrison, E. R. Grant, “Dynamics of the 2-photon photodissociation of NO2: a molecular multiphoton ionization study of NO photofragment internal energy-distributions,” J. Chem. Phys. 77, 5994–6004 (1982), and references therein.
[CrossRef]

R. J. S. Morrison, B. H. Rockney, E. R. Grant, “Multiphoton ionization of NO2: spectroscopy and dynamics,” J. Chem. Phys. 75, 2643–2651 (1981).
[CrossRef]

Muller, M.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

Nelson, D. D.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, L. J. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67(4), 433–441 (1998).

Nunnermacker, L.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, D. E. Winstead, “Reference NO2 calibration system for ground-based intercomparison during NASAs GTE/CITE-2 mission,” J. Geophys. Res. D 95, 10,139–10,146 (1990).
[CrossRef]

Pastel, R. L.

Peng, W. X.

R. P. Singhal, H. S. Kilic, K. W. D. Ledingham, T. McCanny, W. X. Peng, D. J. Smith, C. Kosmidis, A. J. Langley, P. F. Taday, “Comment on the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 292, 643–650 (1998).
[CrossRef]

W. X. Peng, K. W. D. Leddingham, A. Marshall, R. P. Singhal, “Urban air-pollution monitoring: laser-based procedure for the detection of NOx gases,” Analyst (London) 120, 2537–2542 (1995).
[CrossRef]

Rairoux, P.

Robbins, R. A.

R. A. Robbins, A. A. Floreani, S. G. Von Essen, J. H. Sisson, G. E. Hill, I. Rubinstein, R. G. Townley, “Measurement of exhaled nitric oxide by three different techniques,” Am. J. Respir. Crit. Care Med. 153, 1631–1635 (1996).
[CrossRef] [PubMed]

Rockney, B. H.

R. J. S. Morrison, B. H. Rockney, E. R. Grant, “Multiphoton ionization of NO2: spectroscopy and dynamics,” J. Chem. Phys. 75, 2643–2651 (1981).
[CrossRef]

Rodgers, M. O.

Rosepehrsson, S. L.

G. E. Collins, S. L. Rosepehrsson, “Chemiluminescence chemical sensors for oxygen and nitrogen-dioxide,” Anal. Chem. 67, 2224–2230 (1995).
[CrossRef]

Rouse, P. E.

R. Engleman, P. E. Rouse, “The β and γ bands of nitric oxide observed during flash photolysis of nitrosyl chloride,” J. Mol. Spectros. 37, 240–251 (1971).
[CrossRef]

Rubinstein, I.

R. A. Robbins, A. A. Floreani, S. G. Von Essen, J. H. Sisson, G. E. Hill, I. Rubinstein, R. G. Townley, “Measurement of exhaled nitric oxide by three different techniques,” Am. J. Respir. Crit. Care Med. 153, 1631–1635 (1996).
[CrossRef] [PubMed]

Sachse, G.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

Safvan, C. P.

K. Vijaylakahmi, C. P. Safvan, G. R. Kumar, D. Mathur, “On the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 270(1–2), 37–44 (1997).

Sams, R.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, D. E. Winstead, “Reference NO2 calibration system for ground-based intercomparison during NASAs GTE/CITE-2 mission,” J. Geophys. Res. D 95, 10,139–10,146 (1990).
[CrossRef]

A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z. T. Cai, “Determination of nitrogen-dioxide in air compressed gas-mixtures by quantitative tunable diode-laser absorption spectrometry and chemiluminescence detection,” Anal. Chem. 60(5), 394–403 (1988).

Sander, J.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8(7), 521–526 (1994).

Sandholm, S.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

Sauerland, V.

T. Benter, M. Liesner, V. Sauerland, R. N. Schindler, “Mass-spectrometric in-situ determination of NO2 in gas-mixtures by resonance-enhanced multiphoton ionization,” Fresenius J. Anal. Chem. 351(6), 489–492 (1995).

Sausa, R. C.

V. Swayambunathan, G. Singh, R. C. Sausa, “Laser-photofragmentation–fragment detection and laser-pyrolysis–laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447–6454 (1999).
[CrossRef]

J. B. Simeonsson, R. C. Sausa, “Laser photofragmentation/fragment detection techniques for chemical analysis of the gas phase,” Trends Anal. Chem. 17(8, 9), 542–550 (1998), and references therein.

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996), and references therein.
[CrossRef]

R. L. Pastel, R. C. Sausa, “Detection of NO and NO2 by (2 + 2) resonance-enhanced multiphoton ionization and photoacoustic spectroscopy near 454 nm,” Appl. Opt. 35, 4046–4052 (1996).
[CrossRef] [PubMed]

J. B. Simeonsson, R. C. Sausa, “Trace analysis of NO2 in the presence of NO by laser photofragmentation/fragment photoionization spectrometry at visible wavelengths,” Appl. Spectros. 50, 1277–1282 (1996).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Laser-induced photofragmentation/photoionization spectrometry: a method for detecting ambient oxides of nitrogen,” Anal. Chem. 66, 2272–2278 (1994).
[CrossRef]

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

Schindler, R. N.

T. Benter, M. Liesner, V. Sauerland, R. N. Schindler, “Mass-spectrometric in-situ determination of NO2 in gas-mixtures by resonance-enhanced multiphoton ionization,” Fresenius J. Anal. Chem. 351(6), 489–492 (1995).

Schmiedl, R.

H. Zacharias, R. Schmiedl, K. H. Welge, “State selective step-wise photoionization of NO with mass spectroscopic ion detection,” Appl. Phys. 21, 127–133 (1980).
[CrossRef]

Seaver, M.

M. G. White, W. A. Chupka, M. Seaver, A. Woodward, S. D. Colson, “Resonant multiphoton of NO via the 2Σ+ state: photoelectron-spectra and angular distributions,” J. Chem. Phys. 80, 678–686 (1984).
[CrossRef]

Shetter, R.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

Simeonsson, J. B.

J. B. Simeonsson, R. C. Sausa, “Laser photofragmentation/fragment detection techniques for chemical analysis of the gas phase,” Trends Anal. Chem. 17(8, 9), 542–550 (1998), and references therein.

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996), and references therein.
[CrossRef]

J. B. Simeonsson, R. C. Sausa, “Trace analysis of NO2 in the presence of NO by laser photofragmentation/fragment photoionization spectrometry at visible wavelengths,” Appl. Spectros. 50, 1277–1282 (1996).
[CrossRef]

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Laser-induced photofragmentation/photoionization spectrometry: a method for detecting ambient oxides of nitrogen,” Anal. Chem. 66, 2272–2278 (1994).
[CrossRef]

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

Singal, R. P.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8(7), 521–526 (1994).

Singh, G.

Singh, H.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

Singh, J.

Singh, J. P.

Singhal, R. P.

R. P. Singhal, H. S. Kilic, K. W. D. Ledingham, T. McCanny, W. X. Peng, D. J. Smith, C. Kosmidis, A. J. Langley, P. F. Taday, “Comment on the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 292, 643–650 (1998).
[CrossRef]

W. X. Peng, K. W. D. Leddingham, A. Marshall, R. P. Singhal, “Urban air-pollution monitoring: laser-based procedure for the detection of NOx gases,” Analyst (London) 120, 2537–2542 (1995).
[CrossRef]

Sisson, J. H.

R. A. Robbins, A. A. Floreani, S. G. Von Essen, J. H. Sisson, G. E. Hill, I. Rubinstein, R. G. Townley, “Measurement of exhaled nitric oxide by three different techniques,” Am. J. Respir. Crit. Care Med. 153, 1631–1635 (1996).
[CrossRef] [PubMed]

Smith, D. J.

R. P. Singhal, H. S. Kilic, K. W. D. Ledingham, T. McCanny, W. X. Peng, D. J. Smith, C. Kosmidis, A. J. Langley, P. F. Taday, “Comment on the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 292, 643–650 (1998).
[CrossRef]

Stenberg, J.

Sun, W.-M.

J. A. Last, W.-M. Sun, H. Witschi, “Ozone, NO, and NO2-oxidant air-pollutants and more,” Environ. Health Perspect. 102 (Suppl. 10), 179–184 (1994).

Svanberg, S.

Swayambunathan, V.

Taday, P. F.

R. P. Singhal, H. S. Kilic, K. W. D. Ledingham, T. McCanny, W. X. Peng, D. J. Smith, C. Kosmidis, A. J. Langley, P. F. Taday, “Comment on the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 292, 643–650 (1998).
[CrossRef]

Tapper, R. S.

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the 2-photon excitation of NO2: the distinct dynamics of 2-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984), and references therein.

Teague, M. W.

J. A. Vanderhoff, M. W. Teague, A. J. Kotlar, “Detection of temperature and NO concentrations through the dark zone of solid-propellant flames,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1915–1922.

Townley, R. G.

R. A. Robbins, A. A. Floreani, S. G. Von Essen, J. H. Sisson, G. E. Hill, I. Rubinstein, R. G. Townley, “Measurement of exhaled nitric oxide by three different techniques,” Am. J. Respir. Crit. Care Med. 153, 1631–1635 (1996).
[CrossRef] [PubMed]

Valentin, A.

A. Henry, M. F. Le Moal, Ph. Cardinet, A. Valentin, “Overtone bands of 14N16O and determination of molecular constants,” J. Mol. Spectros. 70(1), 18–26 (1978).

Vanderhoff, J. A.

J. A. Vanderhoff, M. W. Teague, A. J. Kotlar, “Detection of temperature and NO concentrations through the dark zone of solid-propellant flames,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1915–1922.

Vattulainen, J.

Vijaylakahmi, K.

K. Vijaylakahmi, C. P. Safvan, G. R. Kumar, D. Mathur, “On the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 270(1–2), 37–44 (1997).

Von Essen, S. G.

R. A. Robbins, A. A. Floreani, S. G. Von Essen, J. H. Sisson, G. E. Hill, I. Rubinstein, R. G. Townley, “Measurement of exhaled nitric oxide by three different techniques,” Am. J. Respir. Crit. Care Med. 153, 1631–1635 (1996).
[CrossRef] [PubMed]

Welge, K. H.

H. Zacharias, R. Schmiedl, K. H. Welge, “State selective step-wise photoionization of NO with mass spectroscopic ion detection,” Appl. Phys. 21, 127–133 (1980).
[CrossRef]

White, M. G.

M. G. White, W. A. Chupka, M. Seaver, A. Woodward, S. D. Colson, “Resonant multiphoton of NO via the 2Σ+ state: photoelectron-spectra and angular distributions,” J. Chem. Phys. 80, 678–686 (1984).
[CrossRef]

Winstead, D. E.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, D. E. Winstead, “Reference NO2 calibration system for ground-based intercomparison during NASAs GTE/CITE-2 mission,” J. Geophys. Res. D 95, 10,139–10,146 (1990).
[CrossRef]

Witschi, H.

J. A. Last, W.-M. Sun, H. Witschi, “Ozone, NO, and NO2-oxidant air-pollutants and more,” Environ. Health Perspect. 102 (Suppl. 10), 179–184 (1994).

Wolf, J. P.

Woodward, A.

M. G. White, W. A. Chupka, M. Seaver, A. Woodward, S. D. Colson, “Resonant multiphoton of NO via the 2Σ+ state: photoelectron-spectra and angular distributions,” J. Chem. Phys. 80, 678–686 (1984).
[CrossRef]

Woste, L.

Wu, D.

Yates, N.

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, D. E. Winstead, “Reference NO2 calibration system for ground-based intercomparison during NASAs GTE/CITE-2 mission,” J. Geophys. Res. D 95, 10,139–10,146 (1990).
[CrossRef]

Yueh, F.

Zacharias, H.

H. Zacharias, R. Schmiedl, K. H. Welge, “State selective step-wise photoionization of NO with mass spectroscopic ion detection,” Appl. Phys. 21, 127–133 (1980).
[CrossRef]

Zahniser, M. S.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, L. J. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67(4), 433–441 (1998).

Zare, R. N.

D. C. Jacobs, R. J. Madix, R. N. Zare, “Reduction of 1 + 1 resonance-enhanced MPI spectra to population-distributions: application to the NO (A 2Σ+ - X 2Π) system,” J. Chem. Phys. 85, 5469–5479 (1986).
[CrossRef]

Am. J. Respir. Crit. Care Med.

R. A. Robbins, A. A. Floreani, S. G. Von Essen, J. H. Sisson, G. E. Hill, I. Rubinstein, R. G. Townley, “Measurement of exhaled nitric oxide by three different techniques,” Am. J. Respir. Crit. Care Med. 153, 1631–1635 (1996).
[CrossRef] [PubMed]

Anal. Chem.

J. B. Simeonsson, G. W. Lemire, R. C. Sausa, “Laser-induced photofragmentation/photoionization spectrometry: a method for detecting ambient oxides of nitrogen,” Anal. Chem. 66, 2272–2278 (1994).
[CrossRef]

A. Fried, R. Sams, W. Dorko, J. W. Elkins, Z. T. Cai, “Determination of nitrogen-dioxide in air compressed gas-mixtures by quantitative tunable diode-laser absorption spectrometry and chemiluminescence detection,” Anal. Chem. 60(5), 394–403 (1988).

G. W. Lemire, J. B. Simeonsson, R. C. Sausa, “Monitoring of vapor-phase nitrocompounds using 226-nm radiation: fragmentation with subsequent NO resonance-enhanced multiphoton ionization detection,” Anal. Chem. 65, 529–533 (1993).
[CrossRef]

G. E. Collins, S. L. Rosepehrsson, “Chemiluminescence chemical sensors for oxygen and nitrogen-dioxide,” Anal. Chem. 67, 2224–2230 (1995).
[CrossRef]

Analyst (London)

W. X. Peng, K. W. D. Leddingham, A. Marshall, R. P. Singhal, “Urban air-pollution monitoring: laser-based procedure for the detection of NOx gases,” Analyst (London) 120, 2537–2542 (1995).
[CrossRef]

Appl. Opt.

Appl. Phys.

H. Zacharias, R. Schmiedl, K. H. Welge, “State selective step-wise photoionization of NO with mass spectroscopic ion detection,” Appl. Phys. 21, 127–133 (1980).
[CrossRef]

Appl. Phys. B

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, L. J. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B 67(4), 433–441 (1998).

Appl. Spectros.

J. B. Simeonsson, R. C. Sausa, “Trace analysis of NO2 in the presence of NO by laser photofragmentation/fragment photoionization spectrometry at visible wavelengths,” Appl. Spectros. 50, 1277–1282 (1996).
[CrossRef]

Appl. Spectrosc. Rev.

J. B. Simeonsson, R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31, 1–72 (1996), and references therein.
[CrossRef]

Atmos. Environ.

M. Glasius, M. F. Carlsen, T. S. Hansen, C. Lohse, “Measurement of nitrogen dioxide on Funene using diffusion tubes,” Atmos. Environ. 33, 1177–1185 (1999).
[CrossRef]

Chem. Phys. Lett.

G. R. Kumar, D. Mathur, “Reply to comment on ‘On the ionization and dissociation of NO2 by short, intense laser pulses,’” Chem. Phys. Lett. 292, 647–650 (1998), and references therein.

R. P. Singhal, H. S. Kilic, K. W. D. Ledingham, T. McCanny, W. X. Peng, D. J. Smith, C. Kosmidis, A. J. Langley, P. F. Taday, “Comment on the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 292, 643–650 (1998).
[CrossRef]

K. Vijaylakahmi, C. P. Safvan, G. R. Kumar, D. Mathur, “On the ionization and dissociation of NO2 by short intense laser pulses,” Chem. Phys. Lett. 270(1–2), 37–44 (1997).

Environ. Health Perspect.

J. A. Last, W.-M. Sun, H. Witschi, “Ozone, NO, and NO2-oxidant air-pollutants and more,” Environ. Health Perspect. 102 (Suppl. 10), 179–184 (1994).

Fresenius J. Anal. Chem.

T. Benter, M. Liesner, V. Sauerland, R. N. Schindler, “Mass-spectrometric in-situ determination of NO2 in gas-mixtures by resonance-enhanced multiphoton ionization,” Fresenius J. Anal. Chem. 351(6), 489–492 (1995).

Geophys. Res. Lett.

J. Bradshaw, D. Davis, J. Crawford, G. Chen, R. Shetter, M. Muller, G. Gregory, G. Sachse, D. Blake, B. Heikes, H. Singh, J. Mastromarino, S. Sandholm, “Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: comparison of measurements with model results based on airborne observations during PEM-Tropics A,” Geophys. Res. Lett. 26(4), 471–474 (1999), and references therein.

J. Chem. Phys.

R. J. S. Morrison, E. R. Grant, “Dynamics of the 2-photon photodissociation of NO2: a molecular multiphoton ionization study of NO photofragment internal energy-distributions,” J. Chem. Phys. 77, 5994–6004 (1982), and references therein.
[CrossRef]

R. J. S. Morrison, B. H. Rockney, E. R. Grant, “Multiphoton ionization of NO2: spectroscopy and dynamics,” J. Chem. Phys. 75, 2643–2651 (1981).
[CrossRef]

D. C. Jacobs, R. J. Madix, R. N. Zare, “Reduction of 1 + 1 resonance-enhanced MPI spectra to population-distributions: application to the NO (A 2Σ+ - X 2Π) system,” J. Chem. Phys. 85, 5469–5479 (1986).
[CrossRef]

J. C. Miler, R. N. Compton, “Multiphoton ionization studies of ultracold nitric-oxide,” J. Chem. Phys. 84, 675–683 (1986).
[CrossRef]

M. G. White, W. A. Chupka, M. Seaver, A. Woodward, S. D. Colson, “Resonant multiphoton of NO via the 2Σ+ state: photoelectron-spectra and angular distributions,” J. Chem. Phys. 80, 678–686 (1984).
[CrossRef]

J. Geophys. Res. D

A. Fried, L. Nunnermacker, B. Cadoff, R. Sams, N. Yates, W. Dorko, R. Dickerson, D. E. Winstead, “Reference NO2 calibration system for ground-based intercomparison during NASAs GTE/CITE-2 mission,” J. Geophys. Res. D 95, 10,139–10,146 (1990).
[CrossRef]

J. Mol. Spectros.

A. Henry, M. F. Le Moal, Ph. Cardinet, A. Valentin, “Overtone bands of 14N16O and determination of molecular constants,” J. Mol. Spectros. 70(1), 18–26 (1978).

R. Engleman, P. E. Rouse, “The β and γ bands of nitric oxide observed during flash photolysis of nitrosyl chloride,” J. Mol. Spectros. 37, 240–251 (1971).
[CrossRef]

J. Phys. Chem.

L. Bigio, R. S. Tapper, E. R. Grant, “The role of near-resonant intermediate states in the 2-photon excitation of NO2: the distinct dynamics of 2-photon photofragmentation,” J. Phys. Chem. 88, 1271–1273 (1984), and references therein.

J. Quant. Spectrosc. Radiat. Transfer

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon excited rotational levels of NO (A 2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27(5), 483–492 (1982).
[CrossRef]

Opt. Lett.

Rapid Commun. Mass Spectrom.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, R. P. Singal, C. Kosmidis, R. M. Deas, “Detection and identification of explosives compounds using laser ionization time-of-flight techniques,” Rapid Commun. Mass Spectrom. 8(7), 521–526 (1994).

Rev. Sci. Instrum.

S. Lee, J. Hirokawa, Y. Kajii, H. Akimoto, “New method for measuring low NO concentrations using laser induced two photon ionization,” Rev. Sci. Instrum. 68, 2891–2897 (1997).
[CrossRef]

Trends Anal. Chem.

J. B. Simeonsson, R. C. Sausa, “Laser photofragmentation/fragment detection techniques for chemical analysis of the gas phase,” Trends Anal. Chem. 17(8, 9), 542–550 (1998), and references therein.

Other

J. A. Vanderhoff, M. W. Teague, A. J. Kotlar, “Detection of temperature and NO concentrations through the dark zone of solid-propellant flames,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1915–1922.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Energy-level diagram showing the PF–PI of NO2 and the REMPI of NO at 226 and 542 nm.

Fig. 2
Fig. 2

(a) PF–PI spectrum of NO2 and (b) (1 + 1) REMPI spectrum of NO in the 223–227-nm region.

Fig. 3
Fig. 3

Observed (dashed curves) and fitted (solid curves) spectra of fragment NO generated from the UV photolysis of NO2 (top) and ambient NO (bottom).

Fig. 4
Fig. 4

(a) PF–PI spectrum of NO2 and (b) (2 + 2) REMPI spectrum of NO in the 449–455-nm region.

Fig. 5
Fig. 5

Response plots of NO2 at 224.4 (◆) and 226.3 nm (⋇) and NO at 226.3 nm (●).

Fig. 6
Fig. 6

Response plots of NO2 at 449.1 (◆) and 450.5 nm (⋇) and NO at 449.1 (●) and 450.5 nm (○).

Fig. 7
Fig. 7

Observed (symbols) and predicted (solid curve) S 226.3 nm/S 224.4 nm ratios for various NO–NO2 mixture concentrations. The absolute NO concentrations vary from 0.06 to 21 ppm and are slightly different for each mixture. The limiting concentrations are fixed by the NO2 LOD, which requires a higher absolute NO concentration at larger [NO]/[NO2] mixture ratios.

Fig. 8
Fig. 8

Observed (symbols) and predicted (solid curve) S 450.5 nm/S 449.1 nm ratios for various NO–NO2 mixture concentrations. The absolute NO concentrations vary from 0.05 to 45 ppm and are slightly different for each mixture. The limiting concentrations are fixed by the NO2 LOD, which requires a higher absolute NO concentration at larger [NO]/[NO2] mixture ratios.

Tables (2)

Tables Icon

Table 1 REMPI and PF–PI Responses (mV/ppm) of NO and NO2, Respectively

Tables Icon

Table 2 Limits of Detection (ppb) of NO and NO2

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Sλ0Sλ1=RNOλ0M+RNO2λ0RNOλ1M+RNO2λ1,

Metrics