Abstract

A potential new laser-based air pollution measurement technique, capable of measuring ultralow concentrations of urban air toxins in the field and in real time, is examined. Cavity ringdown laser absorption spectroscopy (CRLAS) holds promise as an air pollution monitor because it is a highly sensitive species detection technique that uses either pulsed or continuous tunable laser sources. The sensitivity results from an extremely long absorption path length and the fact that the quantity measured, the cavity decay time, is unaffected by fluctuations in the laser source. In laboratory experiments, we reach detection limits for mercury of the order of 0.50 parts per trillion. We developed a CRLAS system in our laboratory and measured Hg with the system, investigating issues such as background interference. We report experimental results for mercury detection limits, the dynamic range of the sensor, detection of Hg in an absorbing background of ozone and SO2, and detection of a mercury-containing compound (HgCl2 in this case).

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Sappey, E. S. Hill, T. Settersten, M. A. Linne, “Fixed frequency cavity ringdown diagnostic for atmospheric particulate matter,” Opt. Lett. 23, 954–956 (1998).
    [CrossRef]
  2. C. Hanish, “Where is the mercury deposition coming from?,” Environ. Sci. Technol. 32, 176A–179A (1998).
    [CrossRef]
  3. Environmental Protection Agency, “Latest findings on national air quality: 1997 status and trends,” (Office of Air Quality, Planning and Standards, Research Triangle Park, N.C., 1998).
  4. W. Fitzgerald, G. Gill, “Subnanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis,” Anal. Chem. 51, 1714–1720 (1979).
    [CrossRef]
  5. F. Slemr, W. Seiler, C. Eberling, P. Roggendorf, “The determination of total gaseous mercury in air at background levels,” Anal. Chim. Acta 110, 35–47 (1979).
    [CrossRef]
  6. H. Edner, G. Faris, A. Sunesson, S. Svanberg, “Atmospheric atomic mercury monitoring using differential absorption lidar techniques,” Appl. Opt. 28, 921–930 (1989).
    [CrossRef] [PubMed]
  7. H. Edner, A. Sunesson, S. Svanberg, L. Uneus, S. Wallin, “Differential optical absorption spectroscopy system used for atmospheric mercury monitoring,” Appl. Opt. 25, 403–409 (1986).
    [CrossRef] [PubMed]
  8. H. Edner, S. Svanberg, L. Uneus, W. Wendt, “Gas-correlation lidar,” Opt. Lett. 9, 493–495 (1984).
    [CrossRef] [PubMed]
  9. M. Aldén, H. Edner, S. Svanberg, “Remote measurement of atmospheric mercury using differential absorption lidar,” Opt. Lett. 7, 221–223 (1982).
    [CrossRef] [PubMed]
  10. J. C. Robbins, “Zeeman spectrometer for measurement of atmospheric mercury,” in Geochemical Exploration, 1972: Proceedings of the Fourth International Geochemical Exploration Symposium, M. J. Jones, ed. (Institution of Mining and Metallurgy, London, 1972), pp. 315–323.
  11. R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
    [CrossRef]
  12. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  13. J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
    [CrossRef] [PubMed]
  14. Y. Nishimura, T. Fujimoto, “λ = 2537A line from a low-pressure mercury discharge lamp emission profile and line absorption by a gas containing a mercury vapor,” Appl. Phys. B 38, 91–98 (1985).
    [CrossRef]
  15. T. J. Hammond, C. F. Gallo, “Effects of argon atoms on the self-absorption and the intensity of Hg 2537-Å radiation in Hg+Ar discharges,” Appl. Opt. 10, 58–64 (1971).
    [CrossRef] [PubMed]
  16. R. West, Handbook of Chemistry and Physics, 63rd ed. (CRC Press, Boca Raton, Fla., 1983).
  17. E. Inn, Y. Tanaka, “Absorption coefficient of ozone in the ultraviolet and visible regions,” J. Opt. Soc. Am. 43, 870–873 (1953).
    [CrossRef]
  18. R. L. DeKock, E. Jan Baerends, P. M. Boerrigter, R. Hengelmolen, “Electronic structure and bonding of Hg(CH3)2, Hg(CN)2, Hg(CH3)(CN), Hg(CCCH3)2 and Au(Pme3) (CH3),” J. Am. Chem. Soc. 106, 3387–3392 (1984).
    [CrossRef]
  19. A. Bzezinska, J. Van Loon, D. Williams, K. Oguma, K. Fuwa, I. H. Haraguchi, “A study of the determination of dimethylmercury and methylmercury chloride in air,” Spectrochim. Acta Part B 38, 1339–1346 (1983).
    [CrossRef]

1998 (2)

1997 (1)

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

1995 (1)

R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

1989 (1)

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1986 (1)

1985 (1)

Y. Nishimura, T. Fujimoto, “λ = 2537A line from a low-pressure mercury discharge lamp emission profile and line absorption by a gas containing a mercury vapor,” Appl. Phys. B 38, 91–98 (1985).
[CrossRef]

1984 (2)

R. L. DeKock, E. Jan Baerends, P. M. Boerrigter, R. Hengelmolen, “Electronic structure and bonding of Hg(CH3)2, Hg(CN)2, Hg(CH3)(CN), Hg(CCCH3)2 and Au(Pme3) (CH3),” J. Am. Chem. Soc. 106, 3387–3392 (1984).
[CrossRef]

H. Edner, S. Svanberg, L. Uneus, W. Wendt, “Gas-correlation lidar,” Opt. Lett. 9, 493–495 (1984).
[CrossRef] [PubMed]

1983 (1)

A. Bzezinska, J. Van Loon, D. Williams, K. Oguma, K. Fuwa, I. H. Haraguchi, “A study of the determination of dimethylmercury and methylmercury chloride in air,” Spectrochim. Acta Part B 38, 1339–1346 (1983).
[CrossRef]

1982 (1)

1979 (2)

W. Fitzgerald, G. Gill, “Subnanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis,” Anal. Chem. 51, 1714–1720 (1979).
[CrossRef]

F. Slemr, W. Seiler, C. Eberling, P. Roggendorf, “The determination of total gaseous mercury in air at background levels,” Anal. Chim. Acta 110, 35–47 (1979).
[CrossRef]

1971 (1)

1953 (1)

Aldén, M.

Boerrigter, P. M.

R. L. DeKock, E. Jan Baerends, P. M. Boerrigter, R. Hengelmolen, “Electronic structure and bonding of Hg(CH3)2, Hg(CN)2, Hg(CH3)(CN), Hg(CCCH3)2 and Au(Pme3) (CH3),” J. Am. Chem. Soc. 106, 3387–3392 (1984).
[CrossRef]

Boogaarts, M.

R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Bzezinska, A.

A. Bzezinska, J. Van Loon, D. Williams, K. Oguma, K. Fuwa, I. H. Haraguchi, “A study of the determination of dimethylmercury and methylmercury chloride in air,” Spectrochim. Acta Part B 38, 1339–1346 (1983).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

DeKock, R. L.

R. L. DeKock, E. Jan Baerends, P. M. Boerrigter, R. Hengelmolen, “Electronic structure and bonding of Hg(CH3)2, Hg(CN)2, Hg(CH3)(CN), Hg(CCCH3)2 and Au(Pme3) (CH3),” J. Am. Chem. Soc. 106, 3387–3392 (1984).
[CrossRef]

Eberling, C.

F. Slemr, W. Seiler, C. Eberling, P. Roggendorf, “The determination of total gaseous mercury in air at background levels,” Anal. Chim. Acta 110, 35–47 (1979).
[CrossRef]

Edner, H.

Faris, G.

Fitzgerald, W.

W. Fitzgerald, G. Gill, “Subnanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis,” Anal. Chem. 51, 1714–1720 (1979).
[CrossRef]

Fujimoto, T.

Y. Nishimura, T. Fujimoto, “λ = 2537A line from a low-pressure mercury discharge lamp emission profile and line absorption by a gas containing a mercury vapor,” Appl. Phys. B 38, 91–98 (1985).
[CrossRef]

Fuwa, K.

A. Bzezinska, J. Van Loon, D. Williams, K. Oguma, K. Fuwa, I. H. Haraguchi, “A study of the determination of dimethylmercury and methylmercury chloride in air,” Spectrochim. Acta Part B 38, 1339–1346 (1983).
[CrossRef]

Gallo, C. F.

Gill, G.

W. Fitzgerald, G. Gill, “Subnanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis,” Anal. Chem. 51, 1714–1720 (1979).
[CrossRef]

Hammond, T. J.

Hanish, C.

C. Hanish, “Where is the mercury deposition coming from?,” Environ. Sci. Technol. 32, 176A–179A (1998).
[CrossRef]

Haraguchi, I. H.

A. Bzezinska, J. Van Loon, D. Williams, K. Oguma, K. Fuwa, I. H. Haraguchi, “A study of the determination of dimethylmercury and methylmercury chloride in air,” Spectrochim. Acta Part B 38, 1339–1346 (1983).
[CrossRef]

Hengelmolen, R.

R. L. DeKock, E. Jan Baerends, P. M. Boerrigter, R. Hengelmolen, “Electronic structure and bonding of Hg(CH3)2, Hg(CN)2, Hg(CH3)(CN), Hg(CCCH3)2 and Au(Pme3) (CH3),” J. Am. Chem. Soc. 106, 3387–3392 (1984).
[CrossRef]

Hill, E. S.

Hollwman, I.

R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Inn, E.

Jan Baerends, E.

R. L. DeKock, E. Jan Baerends, P. M. Boerrigter, R. Hengelmolen, “Electronic structure and bonding of Hg(CH3)2, Hg(CN)2, Hg(CH3)(CN), Hg(CCCH3)2 and Au(Pme3) (CH3),” J. Am. Chem. Soc. 106, 3387–3392 (1984).
[CrossRef]

Jongma, R.

R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Linne, M. A.

Meijer, G.

R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Nishimura, Y.

Y. Nishimura, T. Fujimoto, “λ = 2537A line from a low-pressure mercury discharge lamp emission profile and line absorption by a gas containing a mercury vapor,” Appl. Phys. B 38, 91–98 (1985).
[CrossRef]

O’Keefe, A.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Oguma, K.

A. Bzezinska, J. Van Loon, D. Williams, K. Oguma, K. Fuwa, I. H. Haraguchi, “A study of the determination of dimethylmercury and methylmercury chloride in air,” Spectrochim. Acta Part B 38, 1339–1346 (1983).
[CrossRef]

Paul, J. B.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Robbins, J. C.

J. C. Robbins, “Zeeman spectrometer for measurement of atmospheric mercury,” in Geochemical Exploration, 1972: Proceedings of the Fourth International Geochemical Exploration Symposium, M. J. Jones, ed. (Institution of Mining and Metallurgy, London, 1972), pp. 315–323.

Roggendorf, P.

F. Slemr, W. Seiler, C. Eberling, P. Roggendorf, “The determination of total gaseous mercury in air at background levels,” Anal. Chim. Acta 110, 35–47 (1979).
[CrossRef]

Sappey, A. D.

Saykally, R. J.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Scherer, J. J.

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Seiler, W.

F. Slemr, W. Seiler, C. Eberling, P. Roggendorf, “The determination of total gaseous mercury in air at background levels,” Anal. Chim. Acta 110, 35–47 (1979).
[CrossRef]

Settersten, T.

Slemr, F.

F. Slemr, W. Seiler, C. Eberling, P. Roggendorf, “The determination of total gaseous mercury in air at background levels,” Anal. Chim. Acta 110, 35–47 (1979).
[CrossRef]

Sunesson, A.

Svanberg, S.

Tanaka, Y.

Uneus, L.

Van Loon, J.

A. Bzezinska, J. Van Loon, D. Williams, K. Oguma, K. Fuwa, I. H. Haraguchi, “A study of the determination of dimethylmercury and methylmercury chloride in air,” Spectrochim. Acta Part B 38, 1339–1346 (1983).
[CrossRef]

Wallin, S.

Wendt, W.

West, R.

R. West, Handbook of Chemistry and Physics, 63rd ed. (CRC Press, Boca Raton, Fla., 1983).

Williams, D.

A. Bzezinska, J. Van Loon, D. Williams, K. Oguma, K. Fuwa, I. H. Haraguchi, “A study of the determination of dimethylmercury and methylmercury chloride in air,” Spectrochim. Acta Part B 38, 1339–1346 (1983).
[CrossRef]

Anal. Chem. (1)

W. Fitzgerald, G. Gill, “Subnanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis,” Anal. Chem. 51, 1714–1720 (1979).
[CrossRef]

Anal. Chim. Acta (1)

F. Slemr, W. Seiler, C. Eberling, P. Roggendorf, “The determination of total gaseous mercury in air at background levels,” Anal. Chim. Acta 110, 35–47 (1979).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

Y. Nishimura, T. Fujimoto, “λ = 2537A line from a low-pressure mercury discharge lamp emission profile and line absorption by a gas containing a mercury vapor,” Appl. Phys. B 38, 91–98 (1985).
[CrossRef]

Chem. Rev. (1)

J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams,” Chem. Rev. 97, 25–51 (1997).
[CrossRef] [PubMed]

Environ. Sci. Technol. (1)

C. Hanish, “Where is the mercury deposition coming from?,” Environ. Sci. Technol. 32, 176A–179A (1998).
[CrossRef]

J. Am. Chem. Soc. (1)

R. L. DeKock, E. Jan Baerends, P. M. Boerrigter, R. Hengelmolen, “Electronic structure and bonding of Hg(CH3)2, Hg(CN)2, Hg(CH3)(CN), Hg(CCCH3)2 and Au(Pme3) (CH3),” J. Am. Chem. Soc. 106, 3387–3392 (1984).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (3)

Rev. Sci. Instrum. (2)

R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Spectrochim. Acta Part B (1)

A. Bzezinska, J. Van Loon, D. Williams, K. Oguma, K. Fuwa, I. H. Haraguchi, “A study of the determination of dimethylmercury and methylmercury chloride in air,” Spectrochim. Acta Part B 38, 1339–1346 (1983).
[CrossRef]

Other (3)

R. West, Handbook of Chemistry and Physics, 63rd ed. (CRC Press, Boca Raton, Fla., 1983).

Environmental Protection Agency, “Latest findings on national air quality: 1997 status and trends,” (Office of Air Quality, Planning and Standards, Research Triangle Park, N.C., 1998).

J. C. Robbins, “Zeeman spectrometer for measurement of atmospheric mercury,” in Geochemical Exploration, 1972: Proceedings of the Fourth International Geochemical Exploration Symposium, M. J. Jones, ed. (Institution of Mining and Metallurgy, London, 1972), pp. 315–323.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the standard CRLAS system.

Fig. 2
Fig. 2

High-resolution structure of mercury.

Fig. 3
Fig. 3

Spectrally broadened hyperfine structure of mercury.

Fig. 4
Fig. 4

Current CRLAS setup. CRD, cavity ringdown.

Fig. 5
Fig. 5

CRLAS scan of the Hg line from 253.640 to 253.660 nm. The dots represent CRLAS data, the thick dashed curve represents the result of the spectral model, and the thin dotted curves represent the 3σ measurement error values.

Fig. 6
Fig. 6

CRLAS data. The flow rate versus Hg concentration was produced by the permeation tube.

Fig. 7
Fig. 7

CRLAS scan of SO2 from 253.62 to 253.69 nm. The dotted curve indicates the location of the Hg lines for reference.

Fig. 8
Fig. 8

SO2 concentration versus ringdown time, establishing the detection limit of Hg in SO2.

Fig. 9
Fig. 9

CRLAS scan of HgCl2 and Hg. We matched the relative intensities for ease of comparison by adjusting the permeation tube flow rate.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ=Lc1|ln R|+σMieNparticlesL+σRayleighNscattering molecL+σabsNabsL.
Nabs=1σabsc1τon-1τoff.
CHg=RTPpHgmHgQ,

Metrics