Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Development of a cavity ringdown laser absorption spectrometer for detection of trace levels of mercury

Not Accessible

Your library or personal account may give you access

Abstract

A potential new laser-based air pollution measurement technique, capable of measuring ultralow concentrations of urban air toxins in the field and in real time, is examined. Cavity ringdown laser absorption spectroscopy (CRLAS) holds promise as an air pollution monitor because it is a highly sensitive species detection technique that uses either pulsed or continuous tunable laser sources. The sensitivity results from an extremely long absorption path length and the fact that the quantity measured, the cavity decay time, is unaffected by fluctuations in the laser source. In laboratory experiments, we reach detection limits for mercury of the order of 0.50 parts per trillion. We developed a CRLAS system in our laboratory and measured Hg with the system, investigating issues such as background interference. We report experimental results for mercury detection limits, the dynamic range of the sensor, detection of Hg in an absorbing background of ozone and SO2, and detection of a mercury-containing compound (HgCl2 in this case).

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultrasensitive, real-time trace gas detection using a high-power, multimode diode laser and cavity ringdown spectroscopy

Andreas Karpf, Yuhao Qiao, and Gottipaty N. Rao
Appl. Opt. 55(16) 4497-4504 (2016)

Development of a differential-absorption lidar system for measurement of atmospheric atomic mercury by use of the third harmonic of an LDS-dye laser

Takuya Nayuki, Kohji Marumoto, Takashi Fujii, Tetsuo Fukuchi, Koshichi Nemoto, Akira Shirakawa, and Ken-ichi Ueda
Appl. Opt. 43(35) 6487-6491 (2004)

Atmospheric atomic mercury monitoring using differential absorption lidar techniques

Hans Edner, Gregory W. Faris, Anders Sunesson, and Sune Svanberg
Appl. Opt. 28(5) 921-930 (1989)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved