Abstract

The East China Sea is a typical case 2 water environment, where concentrations of phytoplankton pigments, suspended matter, and chromophoric dissolved organic matter (CDOM) are all higher than those in the open oceans, because of the discharge from the Yangtze River and the Yellow River. By using a hyperspectral semianalytical model, we simulated a set of remote-sensing reflectance for a variety of chlorophyll, suspended matter, and CDOM concentrations. From this simulated data set, a new algorithm for the retrieval of chlorophyll concentration from remote-sensing reflectance is proposed. For this method, we took into account the 682-nm spectral channel in addition to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) channels. When this algorithm was applied to a field data set, the chlorophyll concentrations retrieved through the new algorithm were consistent with field measurements to within a small error of 18%, in contrast with that of 147% between the SeaWiFS ocean chlorophyll 2 algorithm and the in situ observation.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. McClain, E. Yeh, “CZCS bio-optical algorithm comparison. In 1994: Case studies for SeaWiFS calibration and validation,” Part 1, , 13, (NASA Goddard Space Flight Center, Greenbelt, Md., 1994), pp. 3–8.
  2. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24, 937–24,953 (1998).
  3. M. X. He, X. D. Zhang, “Seasonal variation of pigment concentration in the shelf edge of the Eastern China Sea by CZCS,” in Proceedings of the Second Pacific Ocean Remote Sensing Conference ’96 (Institute of Ocean Sciences, Sidney, British Columbia, Canada), (1996).
  4. X. D. Zhang, Y. Okada, N. Kimura, H. Fukushima, Y. Senga, Y. Sugimori, M. X. He, “Comparison of pigment concentration between CZCS-estimation and ship-observation in the waters around Japan: test of an improved atmospheric correction method,” J. Adv. Mar. Sci. Tech. Soci. 1, 14–25 (1995).
  5. M. X. He, L. P. Li, L. Guan, K. P. Du, X. Q. Song, “The retrieval and validation of chlorophyll concentration from SeaWiFS Data of the Eastern China Sea,” in Proceedings of Ocean Flux in the East China Sea (Qingdao, China), in press.
  6. Cruise Report of JGOFS-China Project (1990–2000) (Oceanology Institute, Chinese Academy of Sciences, China), Vols. 1 and 2.
  7. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
    [CrossRef]
  8. L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
    [CrossRef]
  9. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
    [CrossRef]
  10. K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
    [CrossRef]
  11. K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
    [CrossRef]
  12. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. Davis, “Model for the interpretation of hyperspectral remote sensing reflectance,” Appl. Opt. 33, 5721–5732 (1996).
    [CrossRef]
  13. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters: 1. A semianalytical model,” Appl. Opt. 37, 6329–6338 (1998).
    [CrossRef]
  14. Z. P. Lee, K. L. Carder, C. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 338, 3831–3843 (1999).
    [CrossRef]
  15. R. Doerffer, H. Schiller, “Inverse modeling for retrieval of ocean color parameters in Case II coastal waters: an analysis of the minimum error,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 887–893 (1994).
    [CrossRef]
  16. S. Maritorena, J. E. O’Reilly, “Update on the operational SeaWiFS chlorophyll a algorithm,” in SeaWiFS postlaunch calibration and validation analyses. Part 2. SeaWiFS postlaunch technical report series, , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999), Vol. 9.
  17. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, New York, 1994).
  18. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
    [CrossRef]
  19. C. D. Mobley, Hydrolight 3.0 Users’ Guide, (SRI International, Menlo Park, Calif. 94025, 1995), Project 5632.
  20. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
    [CrossRef] [PubMed]
  21. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
    [CrossRef] [PubMed]
  22. R. Pope, E. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  23. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  24. X. S. Huang, D Wu, T. L. Zhang, M. X. He, Z. S. Liu, “A scatterometer for sea water scattering function measurement,” Acta Opt. Sin. 18, 1716–1720 (1998).
  25. H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
    [CrossRef]
  26. Z. P. Lee, “Visible-infrared remote-sensing model and applications for ocean waters,” Ph.D. dissertation (Department of Marine Science, University of South Florida, St. Petersburg, Fla., 1994).
  27. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
    [CrossRef]
  28. M. Kishino, C. R. Booth, N. Okami, “Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter, and pure water,” Limnol. Oceanogr. 19, 340–349 (1984).
    [CrossRef]
  29. J. L. Mueller, C. C. Trees, “Evaluation of coastal zone color scanner diffuse attenuation coefficient algorithms for application to coastal waters,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 72–78 (1990).
    [CrossRef]
  30. H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?,” Limnol. Oceanogr. 34, 1389–1409 (1989).
    [CrossRef]
  31. R. W. Preisendorfer, Hydrologic Optics Vol. 1: Introduction, NTIS PB-259 793/8ST. (National Technical Information Service, Springfield, Va., 1976).
  32. J. D. H. Strickland, T. R. Parson, “A practical handbook of seawater analysis,” J. Fish. Res. Board Can.167–310 (1972).

1999 (1)

Z. P. Lee, K. L. Carder, C. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 338, 3831–3843 (1999).
[CrossRef]

1998 (3)

X. S. Huang, D Wu, T. L. Zhang, M. X. He, Z. S. Liu, “A scatterometer for sea water scattering function measurement,” Acta Opt. Sin. 18, 1716–1720 (1998).

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24, 937–24,953 (1998).

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters: 1. A semianalytical model,” Appl. Opt. 37, 6329–6338 (1998).
[CrossRef]

1997 (1)

1996 (1)

1995 (1)

X. D. Zhang, Y. Okada, N. Kimura, H. Fukushima, Y. Senga, Y. Sugimori, M. X. He, “Comparison of pigment concentration between CZCS-estimation and ship-observation in the waters around Japan: test of an improved atmospheric correction method,” J. Adv. Mar. Sci. Tech. Soci. 1, 14–25 (1995).

1993 (2)

1989 (3)

S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?,” Limnol. Oceanogr. 34, 1389–1409 (1989).
[CrossRef]

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

1985 (1)

K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
[CrossRef]

1984 (1)

M. Kishino, C. R. Booth, N. Okami, “Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter, and pure water,” Limnol. Oceanogr. 19, 340–349 (1984).
[CrossRef]

1981 (3)

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

1977 (1)

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

1972 (1)

J. D. H. Strickland, T. R. Parson, “A practical handbook of seawater analysis,” J. Fish. Res. Board Can.167–310 (1972).

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

Booth, C. R.

M. Kishino, C. R. Booth, N. Okami, “Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter, and pure water,” Limnol. Oceanogr. 19, 340–349 (1984).
[CrossRef]

Bricaud, A.

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

Carder, K. L.

Z. P. Lee, K. L. Carder, C. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 338, 3831–3843 (1999).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24, 937–24,953 (1998).

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters: 1. A semianalytical model,” Appl. Opt. 37, 6329–6338 (1998).
[CrossRef]

Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. Davis, “Model for the interpretation of hyperspectral remote sensing reflectance,” Appl. Opt. 33, 5721–5732 (1996).
[CrossRef]

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
[CrossRef]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

Davis, C.

Doerffer, R.

R. Doerffer, H. Schiller, “Inverse modeling for retrieval of ocean color parameters in Case II coastal waters: an analysis of the minimum error,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 887–893 (1994).
[CrossRef]

Du, K. P.

M. X. He, L. P. Li, L. Guan, K. P. Du, X. Q. Song, “The retrieval and validation of chlorophyll concentration from SeaWiFS Data of the Eastern China Sea,” in Proceedings of Ocean Flux in the East China Sea (Qingdao, China), in press.

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

Fry, E.

Fukushima, H.

X. D. Zhang, Y. Okada, N. Kimura, H. Fukushima, Y. Senga, Y. Sugimori, M. X. He, “Comparison of pigment concentration between CZCS-estimation and ship-observation in the waters around Japan: test of an improved atmospheric correction method,” J. Adv. Mar. Sci. Tech. Soci. 1, 14–25 (1995).

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24, 937–24,953 (1998).

Gentili, B.

Gordon, H. R.

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?,” Limnol. Oceanogr. 34, 1389–1409 (1989).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
[CrossRef]

Guan, L.

M. X. He, L. P. Li, L. Guan, K. P. Du, X. Q. Song, “The retrieval and validation of chlorophyll concentration from SeaWiFS Data of the Eastern China Sea,” in Proceedings of Ocean Flux in the East China Sea (Qingdao, China), in press.

Harvey, G. R.

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

Hawes, S. K.

He, M. X.

X. S. Huang, D Wu, T. L. Zhang, M. X. He, Z. S. Liu, “A scatterometer for sea water scattering function measurement,” Acta Opt. Sin. 18, 1716–1720 (1998).

X. D. Zhang, Y. Okada, N. Kimura, H. Fukushima, Y. Senga, Y. Sugimori, M. X. He, “Comparison of pigment concentration between CZCS-estimation and ship-observation in the waters around Japan: test of an improved atmospheric correction method,” J. Adv. Mar. Sci. Tech. Soci. 1, 14–25 (1995).

M. X. He, L. P. Li, L. Guan, K. P. Du, X. Q. Song, “The retrieval and validation of chlorophyll concentration from SeaWiFS Data of the Eastern China Sea,” in Proceedings of Ocean Flux in the East China Sea (Qingdao, China), in press.

M. X. He, X. D. Zhang, “Seasonal variation of pigment concentration in the shelf edge of the Eastern China Sea by CZCS,” in Proceedings of the Second Pacific Ocean Remote Sensing Conference ’96 (Institute of Ocean Sciences, Sidney, British Columbia, Canada), (1996).

Huang, X. S.

X. S. Huang, D Wu, T. L. Zhang, M. X. He, Z. S. Liu, “A scatterometer for sea water scattering function measurement,” Acta Opt. Sin. 18, 1716–1720 (1998).

Jin, Z.

Kahru, M.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24, 937–24,953 (1998).

Kattawar, G. W.

Kimura, N.

X. D. Zhang, Y. Okada, N. Kimura, H. Fukushima, Y. Senga, Y. Sugimori, M. X. He, “Comparison of pigment concentration between CZCS-estimation and ship-observation in the waters around Japan: test of an improved atmospheric correction method,” J. Adv. Mar. Sci. Tech. Soci. 1, 14–25 (1995).

Kishino, M.

M. Kishino, C. R. Booth, N. Okami, “Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter, and pure water,” Limnol. Oceanogr. 19, 340–349 (1984).
[CrossRef]

Lee, Z. P.

Z. P. Lee, K. L. Carder, C. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 338, 3831–3843 (1999).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters: 1. A semianalytical model,” Appl. Opt. 37, 6329–6338 (1998).
[CrossRef]

Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. Davis, “Model for the interpretation of hyperspectral remote sensing reflectance,” Appl. Opt. 33, 5721–5732 (1996).
[CrossRef]

Z. P. Lee, “Visible-infrared remote-sensing model and applications for ocean waters,” Ph.D. dissertation (Department of Marine Science, University of South Florida, St. Petersburg, Fla., 1994).

Li, L. P.

M. X. He, L. P. Li, L. Guan, K. P. Du, X. Q. Song, “The retrieval and validation of chlorophyll concentration from SeaWiFS Data of the Eastern China Sea,” in Proceedings of Ocean Flux in the East China Sea (Qingdao, China), in press.

Liu, Z. S.

X. S. Huang, D Wu, T. L. Zhang, M. X. He, Z. S. Liu, “A scatterometer for sea water scattering function measurement,” Acta Opt. Sin. 18, 1716–1720 (1998).

Maritorena, S.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24, 937–24,953 (1998).

S. Maritorena, J. E. O’Reilly, “Update on the operational SeaWiFS chlorophyll a algorithm,” in SeaWiFS postlaunch calibration and validation analyses. Part 2. SeaWiFS postlaunch technical report series, , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999), Vol. 9.

McClain, C.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24, 937–24,953 (1998).

McClain, C. R.

C. R. McClain, E. Yeh, “CZCS bio-optical algorithm comparison. In 1994: Case studies for SeaWiFS calibration and validation,” Part 1, , 13, (NASA Goddard Space Flight Center, Greenbelt, Md., 1994), pp. 3–8.

Mitchell, B. G.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24, 937–24,953 (1998).

Mobley, C.

Z. P. Lee, K. L. Carder, C. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 338, 3831–3843 (1999).
[CrossRef]

Mobley, C. D.

Morel, A.

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
[CrossRef]

Mueller, J. L.

J. L. Mueller, C. C. Trees, “Evaluation of coastal zone color scanner diffuse attenuation coefficient algorithms for application to coastal waters,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 72–78 (1990).
[CrossRef]

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24, 937–24,953 (1998).

S. Maritorena, J. E. O’Reilly, “Update on the operational SeaWiFS chlorophyll a algorithm,” in SeaWiFS postlaunch calibration and validation analyses. Part 2. SeaWiFS postlaunch technical report series, , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999), Vol. 9.

Okada, Y.

X. D. Zhang, Y. Okada, N. Kimura, H. Fukushima, Y. Senga, Y. Sugimori, M. X. He, “Comparison of pigment concentration between CZCS-estimation and ship-observation in the waters around Japan: test of an improved atmospheric correction method,” J. Adv. Mar. Sci. Tech. Soci. 1, 14–25 (1995).

Okami, N.

M. Kishino, C. R. Booth, N. Okami, “Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter, and pure water,” Limnol. Oceanogr. 19, 340–349 (1984).
[CrossRef]

Ortner, P. B.

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

Parson, T. R.

J. D. H. Strickland, T. R. Parson, “A practical handbook of seawater analysis,” J. Fish. Res. Board Can.167–310 (1972).

Patch, J. S.

Z. P. Lee, K. L. Carder, C. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 338, 3831–3843 (1999).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters: 1. A semianalytical model,” Appl. Opt. 37, 6329–6338 (1998).
[CrossRef]

Peacock, T. G.

Perry, M. J.

S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Pope, R.

Preisendorfer, R. W.

R. W. Preisendorfer, Hydrologic Optics Vol. 1: Introduction, NTIS PB-259 793/8ST. (National Technical Information Service, Springfield, Va., 1976).

Prieur, L.

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Reinersman, P.

Roesler, S.

S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Sathyendranath, S.

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Schiller, H.

R. Doerffer, H. Schiller, “Inverse modeling for retrieval of ocean color parameters in Case II coastal waters: an analysis of the minimum error,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 887–893 (1994).
[CrossRef]

Senga, Y.

X. D. Zhang, Y. Okada, N. Kimura, H. Fukushima, Y. Senga, Y. Sugimori, M. X. He, “Comparison of pigment concentration between CZCS-estimation and ship-observation in the waters around Japan: test of an improved atmospheric correction method,” J. Adv. Mar. Sci. Tech. Soci. 1, 14–25 (1995).

Siegel, D. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24, 937–24,953 (1998).

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

Song, X. Q.

M. X. He, L. P. Li, L. Guan, K. P. Du, X. Q. Song, “The retrieval and validation of chlorophyll concentration from SeaWiFS Data of the Eastern China Sea,” in Proceedings of Ocean Flux in the East China Sea (Qingdao, China), in press.

Stamnes, K.

Stavn, R. H.

Steward, R. G.

Z. P. Lee, K. L. Carder, C. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 338, 3831–3843 (1999).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch, “Hyperspectral remote sensing for shallow waters: 1. A semianalytical model,” Appl. Opt. 37, 6329–6338 (1998).
[CrossRef]

Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. Davis, “Model for the interpretation of hyperspectral remote sensing reflectance,” Appl. Opt. 33, 5721–5732 (1996).
[CrossRef]

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
[CrossRef]

Strickland, J. D. H.

J. D. H. Strickland, T. R. Parson, “A practical handbook of seawater analysis,” J. Fish. Res. Board Can.167–310 (1972).

Sugimori, Y.

X. D. Zhang, Y. Okada, N. Kimura, H. Fukushima, Y. Senga, Y. Sugimori, M. X. He, “Comparison of pigment concentration between CZCS-estimation and ship-observation in the waters around Japan: test of an improved atmospheric correction method,” J. Adv. Mar. Sci. Tech. Soci. 1, 14–25 (1995).

Trees, C. C.

J. L. Mueller, C. C. Trees, “Evaluation of coastal zone color scanner diffuse attenuation coefficient algorithms for application to coastal waters,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 72–78 (1990).
[CrossRef]

Wu, D

X. S. Huang, D Wu, T. L. Zhang, M. X. He, Z. S. Liu, “A scatterometer for sea water scattering function measurement,” Acta Opt. Sin. 18, 1716–1720 (1998).

Yeh, E.

C. R. McClain, E. Yeh, “CZCS bio-optical algorithm comparison. In 1994: Case studies for SeaWiFS calibration and validation,” Part 1, , 13, (NASA Goddard Space Flight Center, Greenbelt, Md., 1994), pp. 3–8.

Zhang, T. L.

X. S. Huang, D Wu, T. L. Zhang, M. X. He, Z. S. Liu, “A scatterometer for sea water scattering function measurement,” Acta Opt. Sin. 18, 1716–1720 (1998).

Zhang, X. D.

X. D. Zhang, Y. Okada, N. Kimura, H. Fukushima, Y. Senga, Y. Sugimori, M. X. He, “Comparison of pigment concentration between CZCS-estimation and ship-observation in the waters around Japan: test of an improved atmospheric correction method,” J. Adv. Mar. Sci. Tech. Soci. 1, 14–25 (1995).

M. X. He, X. D. Zhang, “Seasonal variation of pigment concentration in the shelf edge of the Eastern China Sea by CZCS,” in Proceedings of the Second Pacific Ocean Remote Sensing Conference ’96 (Institute of Ocean Sciences, Sidney, British Columbia, Canada), (1996).

Acta Opt. Sin. (1)

X. S. Huang, D Wu, T. L. Zhang, M. X. He, Z. S. Liu, “A scatterometer for sea water scattering function measurement,” Acta Opt. Sin. 18, 1716–1720 (1998).

Appl. Opt. (7)

J. Adv. Mar. Sci. Tech. Soci. (1)

X. D. Zhang, Y. Okada, N. Kimura, H. Fukushima, Y. Senga, Y. Sugimori, M. X. He, “Comparison of pigment concentration between CZCS-estimation and ship-observation in the waters around Japan: test of an improved atmospheric correction method,” J. Adv. Mar. Sci. Tech. Soci. 1, 14–25 (1995).

J. Fish. Res. Board Can. (1)

J. D. H. Strickland, T. R. Parson, “A practical handbook of seawater analysis,” J. Fish. Res. Board Can.167–310 (1972).

J. Geophys. Res. (2)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24, 937–24,953 (1998).

Limnol. Oceanogr. (8)

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

K. L. Carder, R. G. Steward, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red tide dinoflagellate off West Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
[CrossRef]

S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

M. Kishino, C. R. Booth, N. Okami, “Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter, and pure water,” Limnol. Oceanogr. 19, 340–349 (1984).
[CrossRef]

H. R. Gordon, “Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?,” Limnol. Oceanogr. 34, 1389–1409 (1989).
[CrossRef]

Other (12)

R. W. Preisendorfer, Hydrologic Optics Vol. 1: Introduction, NTIS PB-259 793/8ST. (National Technical Information Service, Springfield, Va., 1976).

J. L. Mueller, C. C. Trees, “Evaluation of coastal zone color scanner diffuse attenuation coefficient algorithms for application to coastal waters,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 72–78 (1990).
[CrossRef]

C. D. Mobley, Hydrolight 3.0 Users’ Guide, (SRI International, Menlo Park, Calif. 94025, 1995), Project 5632.

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
[CrossRef]

Z. P. Lee, “Visible-infrared remote-sensing model and applications for ocean waters,” Ph.D. dissertation (Department of Marine Science, University of South Florida, St. Petersburg, Fla., 1994).

C. R. McClain, E. Yeh, “CZCS bio-optical algorithm comparison. In 1994: Case studies for SeaWiFS calibration and validation,” Part 1, , 13, (NASA Goddard Space Flight Center, Greenbelt, Md., 1994), pp. 3–8.

M. X. He, X. D. Zhang, “Seasonal variation of pigment concentration in the shelf edge of the Eastern China Sea by CZCS,” in Proceedings of the Second Pacific Ocean Remote Sensing Conference ’96 (Institute of Ocean Sciences, Sidney, British Columbia, Canada), (1996).

M. X. He, L. P. Li, L. Guan, K. P. Du, X. Q. Song, “The retrieval and validation of chlorophyll concentration from SeaWiFS Data of the Eastern China Sea,” in Proceedings of Ocean Flux in the East China Sea (Qingdao, China), in press.

Cruise Report of JGOFS-China Project (1990–2000) (Oceanology Institute, Chinese Academy of Sciences, China), Vols. 1 and 2.

R. Doerffer, H. Schiller, “Inverse modeling for retrieval of ocean color parameters in Case II coastal waters: an analysis of the minimum error,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 887–893 (1994).
[CrossRef]

S. Maritorena, J. E. O’Reilly, “Update on the operational SeaWiFS chlorophyll a algorithm,” in SeaWiFS postlaunch calibration and validation analyses. Part 2. SeaWiFS postlaunch technical report series, , S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999), Vol. 9.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Curves of chlorophyll spectral absorption coefficients for different chlorophyll concentrations.

Fig. 2
Fig. 2

Curves of simulated remote-sensing reflectance spectra as computed for different chlorophyll concentrations: (a) B = 0.1, a g (440) = 0.05; (b) B = 0.3, a g (440) = 0.05; (c) B = 0.1, a g (440) = 0.1.

Fig. 3
Fig. 3

Comparison of absorption coefficient (unit m-1) values computed with the semianalytical model and with the model derived by use of Eq. (11). The solid line represents the 1:1 ratio. The theoretical error is 6%.

Fig. 4
Fig. 4

Curves of simulated spectral absorption coefficients as computed for different chlorophyll concentrations: (a) B = 0.1, a g (440) = 0.05; (b) B = 1, a g (440) = 0.1.

Fig. 5
Fig. 5

Comparison of chlorophyll concentration C values as retrieved with Eq. (11) and simulated input chlorophyll concentration C′ values. The solid line represents the 1:1 ratio. The theoretical error is 8%.

Fig. 6
Fig. 6

Geographic locations and cruise line of the in situ experiments from 7 to 23 July 1998 on the Science I research vessel as part of the Joint Global Ocean Flux Study–China Project.

Fig. 7
Fig. 7

Curves of in situ remote-sensing reflectance spectra of station 403 to station 418, from coastal waters to deep oceans.

Fig. 8
Fig. 8

Comparison of retrieved chlorophyll concentration values with in situ values. The solid curve represents the 1:1 ratio. The error is 18%. In comparison, the SeaWiFS OC2 algorithm retrieved chlorophyll concentration values with in situ values had an error of 147%.

Tables (2)

Tables Icon

Table 1 Input Values Used for the Simulations

Tables Icon

Table 2 Parameters for the Empirical a(λ) Simulation by Eq. (11)

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Rrs=LwλEd0+,
Rrs=ζrrs1-Γrrs,
rrs=g0+g1uu,
u=bba+bb.
bbpλ=550/λbbp/bpBC0.62,
aϕλ=aa0λ+aa1λlnaϕ440aϕ440,
aϕ440=0.06C0.65,
adgλ=adg440exp-yλ-440,
lnK490-0.022=A0+A1 lnLw443Lw550+A2 lnLw520Lw550+A3λlnLw670Lw550.
Kλ  aλ+bbλ,
lnaλ=a0λ+a1λlnRrs412Rrs555+a2λlnRrs443Rrs555+a3λlnRrs490Rrs555+a4λlnRrs510Rrs555+a5λlnRrs670Rrs555+a6λlnRrs682Rrs555,
aλ=aϕλ+adgλ+awλ.
error=average[valuetrue - valuecalculate21/2/averagevaluetrue,
C=100.2974-2.2429*R+0.8358*R2-0.0077*R3-0.0929,R=log10Rrs490/Rrs555.

Metrics