Abstract

What is to our knowledge a novel infrared thermometer (IRT) for remote measurement of the temperature rise (-20–100 K) above the variable ambient (270–320 K) of a distant object is described. A radiation-balancing method is successfully extended to the near-ambient temperature range by variation of the temperature of a built-in blackbody, until the radiation from it equals the radiation from the source, so that its temperature is proportional to that of the source. Another feature believed to be novel is simplifying the design by elimination of the need for cooling the blackbody for subambient temperature range by use of a second blackbody, strategically located, which is heated to achieve radiation balance. Detailed theoretical analysis is given, showing that the IRT can measure remotely the total emissivity or even the electric current or voltage. Resistive inserts are proposed for improving the accuracy of current measurement. A method is proposed for simultaneous remote measurement of absolute temperature and emissivity by variation of the heating current and the aperture of the blackbody for radiation balancing in two bands so that prior knowledge of the object’s emissivity is not needed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Harigovindan, K. Natarajan, K. R. Venkataramani, “A Remote sensing IR thermometer,” in Proceedings of the Sixth Symposium of the Optical Society of India (Instruments Research and Development Establishment, Dehradun, India, 1978).
  2. S. Harigovindan, K. Natarajan, “A novel IR thermometer using nulling black bodies,” (Vikram Sarabhai Space Centre, Trivandrum, India, 1980).
  3. T. R. Harrison, Radiation Pyrometry and Its Underlying Principles of Radiant Heat Transfer (Wiley, New York, 1991).
  4. R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969).
  5. L. Michalski, K. Eckersdorf, J. Macghee, Temperature Measurement (Wiley, New York, 1991), Chap. 5.
  6. H. Stommel, W. S. Von Arx, D. Parson, W. S. Richardson, “Rapid aerial survey of Gulf Stream with camera and radiation thermometer,” J. Sci. Instrum. 32, 167–170 (1955).
  7. F. O. Bartell, “T*—A calculation aid for radiometry,” in Characterization, Propagation, and Simulation of Infrared Scenes, M. J. Triplett, W. R. Watkins, F. H. Zegel, eds., Proc. SPIE1311, 95–108 (1990).
  8. E. H. Putley, “Thermal detectors,” in Optical and Infrared Detectors, Vol. 19 of Topics in Applied Physics Series (Springer-Verlag, Berlin, 1977), pp. 71–100.
    [CrossRef]
  9. E. H. Putley, “A method for evaluating the performance of pyro-electric detectors,” Infrared Phys. 20, 149–156 (1980).
    [CrossRef]
  10. R. A. Smith, F. E. Jones, R. P. Chesman, The Detection and Measurement of Infrared Radiation (Oxford University Press, New York, 1968).
  11. S. Harigovindan, M. V. Bhaskara Rao, “Radiometric errors due to focusing collecting optics at varying object distances,” App. Opt. 20, 2590–2594 (1981).
    [CrossRef]

1981

S. Harigovindan, M. V. Bhaskara Rao, “Radiometric errors due to focusing collecting optics at varying object distances,” App. Opt. 20, 2590–2594 (1981).
[CrossRef]

1980

E. H. Putley, “A method for evaluating the performance of pyro-electric detectors,” Infrared Phys. 20, 149–156 (1980).
[CrossRef]

1955

H. Stommel, W. S. Von Arx, D. Parson, W. S. Richardson, “Rapid aerial survey of Gulf Stream with camera and radiation thermometer,” J. Sci. Instrum. 32, 167–170 (1955).

Bartell, F. O.

F. O. Bartell, “T*—A calculation aid for radiometry,” in Characterization, Propagation, and Simulation of Infrared Scenes, M. J. Triplett, W. R. Watkins, F. H. Zegel, eds., Proc. SPIE1311, 95–108 (1990).

Chesman, R. P.

R. A. Smith, F. E. Jones, R. P. Chesman, The Detection and Measurement of Infrared Radiation (Oxford University Press, New York, 1968).

Eckersdorf, K.

L. Michalski, K. Eckersdorf, J. Macghee, Temperature Measurement (Wiley, New York, 1991), Chap. 5.

Harigovindan, S.

S. Harigovindan, M. V. Bhaskara Rao, “Radiometric errors due to focusing collecting optics at varying object distances,” App. Opt. 20, 2590–2594 (1981).
[CrossRef]

S. Harigovindan, K. Natarajan, K. R. Venkataramani, “A Remote sensing IR thermometer,” in Proceedings of the Sixth Symposium of the Optical Society of India (Instruments Research and Development Establishment, Dehradun, India, 1978).

S. Harigovindan, K. Natarajan, “A novel IR thermometer using nulling black bodies,” (Vikram Sarabhai Space Centre, Trivandrum, India, 1980).

Harrison, T. R.

T. R. Harrison, Radiation Pyrometry and Its Underlying Principles of Radiant Heat Transfer (Wiley, New York, 1991).

Hudson, R. D.

R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969).

Jones, F. E.

R. A. Smith, F. E. Jones, R. P. Chesman, The Detection and Measurement of Infrared Radiation (Oxford University Press, New York, 1968).

Macghee, J.

L. Michalski, K. Eckersdorf, J. Macghee, Temperature Measurement (Wiley, New York, 1991), Chap. 5.

Michalski, L.

L. Michalski, K. Eckersdorf, J. Macghee, Temperature Measurement (Wiley, New York, 1991), Chap. 5.

Natarajan, K.

S. Harigovindan, K. Natarajan, “A novel IR thermometer using nulling black bodies,” (Vikram Sarabhai Space Centre, Trivandrum, India, 1980).

S. Harigovindan, K. Natarajan, K. R. Venkataramani, “A Remote sensing IR thermometer,” in Proceedings of the Sixth Symposium of the Optical Society of India (Instruments Research and Development Establishment, Dehradun, India, 1978).

Parson, D.

H. Stommel, W. S. Von Arx, D. Parson, W. S. Richardson, “Rapid aerial survey of Gulf Stream with camera and radiation thermometer,” J. Sci. Instrum. 32, 167–170 (1955).

Putley, E. H.

E. H. Putley, “A method for evaluating the performance of pyro-electric detectors,” Infrared Phys. 20, 149–156 (1980).
[CrossRef]

E. H. Putley, “Thermal detectors,” in Optical and Infrared Detectors, Vol. 19 of Topics in Applied Physics Series (Springer-Verlag, Berlin, 1977), pp. 71–100.
[CrossRef]

Rao, M. V. Bhaskara

S. Harigovindan, M. V. Bhaskara Rao, “Radiometric errors due to focusing collecting optics at varying object distances,” App. Opt. 20, 2590–2594 (1981).
[CrossRef]

Richardson, W. S.

H. Stommel, W. S. Von Arx, D. Parson, W. S. Richardson, “Rapid aerial survey of Gulf Stream with camera and radiation thermometer,” J. Sci. Instrum. 32, 167–170 (1955).

Smith, R. A.

R. A. Smith, F. E. Jones, R. P. Chesman, The Detection and Measurement of Infrared Radiation (Oxford University Press, New York, 1968).

Stommel, H.

H. Stommel, W. S. Von Arx, D. Parson, W. S. Richardson, “Rapid aerial survey of Gulf Stream with camera and radiation thermometer,” J. Sci. Instrum. 32, 167–170 (1955).

Venkataramani, K. R.

S. Harigovindan, K. Natarajan, K. R. Venkataramani, “A Remote sensing IR thermometer,” in Proceedings of the Sixth Symposium of the Optical Society of India (Instruments Research and Development Establishment, Dehradun, India, 1978).

Von Arx, W. S.

H. Stommel, W. S. Von Arx, D. Parson, W. S. Richardson, “Rapid aerial survey of Gulf Stream with camera and radiation thermometer,” J. Sci. Instrum. 32, 167–170 (1955).

App. Opt.

S. Harigovindan, M. V. Bhaskara Rao, “Radiometric errors due to focusing collecting optics at varying object distances,” App. Opt. 20, 2590–2594 (1981).
[CrossRef]

Infrared Phys.

E. H. Putley, “A method for evaluating the performance of pyro-electric detectors,” Infrared Phys. 20, 149–156 (1980).
[CrossRef]

J. Sci. Instrum.

H. Stommel, W. S. Von Arx, D. Parson, W. S. Richardson, “Rapid aerial survey of Gulf Stream with camera and radiation thermometer,” J. Sci. Instrum. 32, 167–170 (1955).

Other

F. O. Bartell, “T*—A calculation aid for radiometry,” in Characterization, Propagation, and Simulation of Infrared Scenes, M. J. Triplett, W. R. Watkins, F. H. Zegel, eds., Proc. SPIE1311, 95–108 (1990).

E. H. Putley, “Thermal detectors,” in Optical and Infrared Detectors, Vol. 19 of Topics in Applied Physics Series (Springer-Verlag, Berlin, 1977), pp. 71–100.
[CrossRef]

R. A. Smith, F. E. Jones, R. P. Chesman, The Detection and Measurement of Infrared Radiation (Oxford University Press, New York, 1968).

S. Harigovindan, K. Natarajan, K. R. Venkataramani, “A Remote sensing IR thermometer,” in Proceedings of the Sixth Symposium of the Optical Society of India (Instruments Research and Development Establishment, Dehradun, India, 1978).

S. Harigovindan, K. Natarajan, “A novel IR thermometer using nulling black bodies,” (Vikram Sarabhai Space Centre, Trivandrum, India, 1980).

T. R. Harrison, Radiation Pyrometry and Its Underlying Principles of Radiant Heat Transfer (Wiley, New York, 1991).

R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969).

L. Michalski, K. Eckersdorf, J. Macghee, Temperature Measurement (Wiley, New York, 1991), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the IRT: M1, M2, mirrors; PS, photosensor; D, thermal detector.

Fig. 2
Fig. 2

Waveforms in the IRT.

Fig. 3
Fig. 3

Relation between blackbody temperature and blackbody current.

Fig. 4
Fig. 4

Effect of varying the T s on T b for various values of S or source emissivity (T 0 = 300 K).

Fig. 5
Fig. 5

Internal blackbody for radiation balancing.

Fig. 6
Fig. 6

Calibration with the object (a standard blackbody) at a distance of 20 m.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

ei=ρK1Ts4-T04,
τade0/dt+e0=Gei.
Rbe02/Rt2=C0dθb/dt+C1θb,
θb=C1e02Rb/Rt2.
ei=ρK1Ts4-T04-K2Tb4-T04,
K1=σsdAcΩs/π,
K2=σebedAdWb/π,
ei=4ρT03K1θs-K2θb.
a3d2e0/dt2+a2de0/dt+a1e0+a0e02=b1dθs/dt+b0θs,
e02=Rt2K2/RbC1K1θs,
θb=Sθs,
Tb=pSTs4-T04+T041/4,
Δθs1=SθsRbC31/2/4rT03K1GRtS,
Δθb2=1-sT*-T0/s.
ΔP=4BkT2C1/2,
Δθs3=B1/2/4ρT03K1ein2+16kρ2T03K1Ts2+K2Tb2+K1/s-K22T02/Gd+K2(1-sT*2/s1/2.
V0=q signe0e02/s
s1=s0θb1/θb0.
Δθs/θs=Δs/s,
K10 ρλPλ, TsFiλdλ=K20 ρλPλ, TbFiλdλ,
s=bΩb/AcΩdAb,
θs=C1sRsis2.
is=b0/a1C1sRs1/2e0,

Metrics