Abstract

A four-element photomixer receiver has been tested in a 10-µm heterodyne Doppler lidar. It addresses a reduction of the variance of the power scattered off distributed aerosols targets at ranges as long as 8 km. An improvement in performance is expected when the four independent signals recorded on every single shot are combined. Two summation techniques of the four signals have been implemented: a coherent summation of signal amplitude and an incoherent summation of intensities. A phasing technique for the four signals is proposed. It is based on a more suitable correlation time with discernible self-consistent packets (SCP’s). The SCP technique has been successfully tested, and the results obtained with a coherent summation of the four signals, i.e., variance reduction, carrier-to-noise ratio improvement, and velocity accuracy improvement, are in agreement with theory.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Favreau, A. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constituents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.
  2. R. M. Hardesty, “Measurement of Range-resolved water-vapor concentration by coherent CO2 differential absorption,” (National Oceanic and Atmospheric Administration, Boulder, Colo., 1984), pp. 45–47.
  3. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer–Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
    [CrossRef]
  4. D. Fink, S. N. Vodopia, “Coherent detection SNR of an array of detectors,” Appl. Opt. 15, 453–454 (1976).
    [CrossRef] [PubMed]
  5. J. D. Parsons, “Diversity techniques in communications receivers,” in Advanced Signal Processing, D. A. Creasey, ed. (Peregrinus, London, 1985), Chap. 6.
    [CrossRef]
  6. P. Gatt, T. P. Costello, D. A. Heimmermann, D. C. Castellanos, A. R. Weeks, C. M. Stickley, “Coherent optical array receivers for the mitigation of atmospheric turbulence and speckle effects,” Appl. Opt. 35, 5999–6009 (1996).
    [CrossRef] [PubMed]
  7. P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organised large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
    [CrossRef]
  8. P. Delville, X. Favreau, C. Loth, P. H. Flamant, “Assessment of heterodyne efficiency for coherent lidar applications,” in Proceedings of the Ninth conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 152–155.
  9. P. Salamitou, A. Dabas, P. H. Flamant, “Simulation in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–506 (1995).
    [CrossRef] [PubMed]
  10. N. Sugimoto, K. P. Chan, D. K. Killinger, “Optimal heterodyne detector array size for 1-µm coherent lidar propagation through atmospheric turbulence,” Appl. Opt. 30, 2609–2616 (1991).
    [CrossRef] [PubMed]
  11. K. P. Chan, D. K. Killinger, “Coherent summation of spatially distorded laser Doppler signals by using a two dimensional heterodyne detector array,” Opt. Lett. 17, 1237–1239 (1992).
    [CrossRef] [PubMed]
  12. E. Jakeman, C. J. Oliver, E. R. Pike, “Optical homodyne detection,” Adv. Phys. 24, 349–356 (1975).
    [CrossRef]
  13. A. Dabas, P. H. Flamant, P. Salamitou, “Characterization of pulsed coherent Doppler LIDAR with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994).
    [CrossRef] [PubMed]
  14. G. M. Ancellet, R. T. Menzies, “Atmospheric correlation-time measurements and effects on coherent Doppler lidar,” J. Opt. Soc. Am. A 4, 367–373 (1987).
    [CrossRef]
  15. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 6.
  16. Ref. 15, Chap. 2.
  17. V. S. R. Gudimetla, J. F. Holmes, “Probability density function of the intensity for a laser-generated speckle field after propagation through the turbulent atmosphere,” J. Opt. Soc. Am. 72, 1213–1218 (1982).
    [CrossRef]
  18. D. S. Zrnic, “Estimation of spectral moments of weather echoes,” IEEE Trans. Geosci. Electron. GE-17, 113–127 (1979).
    [CrossRef]
  19. P. Drobinski, P. H. Flamant, P. Salamitou, “Spectral diversity techniques for heterodyne Doppler lidar using hard target,” Appl. Opt. 39, 376–385 (2000).
    [CrossRef]

2000

1998

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organised large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

1996

1995

1994

1993

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer–Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

1992

1991

1987

1982

1979

D. S. Zrnic, “Estimation of spectral moments of weather echoes,” IEEE Trans. Geosci. Electron. GE-17, 113–127 (1979).
[CrossRef]

1976

1975

E. Jakeman, C. J. Oliver, E. R. Pike, “Optical homodyne detection,” Adv. Phys. 24, 349–356 (1975).
[CrossRef]

Ancellet, G. M.

Ansmann, A.

X. Favreau, A. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constituents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

Brown, R. A.

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organised large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

Castellanos, D. C.

Chan, K. P.

Costello, T. P.

Dabas, A.

P. Salamitou, A. Dabas, P. H. Flamant, “Simulation in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–506 (1995).
[CrossRef] [PubMed]

A. Dabas, P. H. Flamant, P. Salamitou, “Characterization of pulsed coherent Doppler LIDAR with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994).
[CrossRef] [PubMed]

X. Favreau, A. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constituents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

Delville, P.

X. Favreau, A. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constituents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

P. Delville, X. Favreau, C. Loth, P. H. Flamant, “Assessment of heterodyne efficiency for coherent lidar applications,” in Proceedings of the Ninth conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 152–155.

Drobinski, P.

P. Drobinski, P. H. Flamant, P. Salamitou, “Spectral diversity techniques for heterodyne Doppler lidar using hard target,” Appl. Opt. 39, 376–385 (2000).
[CrossRef]

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organised large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

Favreau, X.

X. Favreau, A. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constituents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

P. Delville, X. Favreau, C. Loth, P. H. Flamant, “Assessment of heterodyne efficiency for coherent lidar applications,” in Proceedings of the Ninth conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 152–155.

Fink, D.

Flamant, P. H.

P. Drobinski, P. H. Flamant, P. Salamitou, “Spectral diversity techniques for heterodyne Doppler lidar using hard target,” Appl. Opt. 39, 376–385 (2000).
[CrossRef]

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organised large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

P. Salamitou, A. Dabas, P. H. Flamant, “Simulation in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–506 (1995).
[CrossRef] [PubMed]

A. Dabas, P. H. Flamant, P. Salamitou, “Characterization of pulsed coherent Doppler LIDAR with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994).
[CrossRef] [PubMed]

X. Favreau, A. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constituents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

P. Delville, X. Favreau, C. Loth, P. H. Flamant, “Assessment of heterodyne efficiency for coherent lidar applications,” in Proceedings of the Ninth conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 152–155.

Gatt, P.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 6.

Gudimetla, V. S. R.

Hardesty, R. M.

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer–Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

R. M. Hardesty, “Measurement of Range-resolved water-vapor concentration by coherent CO2 differential absorption,” (National Oceanic and Atmospheric Administration, Boulder, Colo., 1984), pp. 45–47.

Heimmermann, D. A.

Holmes, J. F.

Jakeman, E.

E. Jakeman, C. J. Oliver, E. R. Pike, “Optical homodyne detection,” Adv. Phys. 24, 349–356 (1975).
[CrossRef]

Killinger, D. K.

Loth, C.

P. Delville, X. Favreau, C. Loth, P. H. Flamant, “Assessment of heterodyne efficiency for coherent lidar applications,” in Proceedings of the Ninth conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 152–155.

Menzies, R. T.

Neuber, R.

X. Favreau, A. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constituents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

Oliver, C. J.

E. Jakeman, C. J. Oliver, E. R. Pike, “Optical homodyne detection,” Adv. Phys. 24, 349–356 (1975).
[CrossRef]

Parsons, J. D.

J. D. Parsons, “Diversity techniques in communications receivers,” in Advanced Signal Processing, D. A. Creasey, ed. (Peregrinus, London, 1985), Chap. 6.
[CrossRef]

Pelon, J.

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organised large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

X. Favreau, A. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constituents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

Pike, E. R.

E. Jakeman, C. J. Oliver, E. R. Pike, “Optical homodyne detection,” Adv. Phys. 24, 349–356 (1975).
[CrossRef]

Rairoux, P.

X. Favreau, A. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constituents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

Rye, B. J.

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer–Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

Salamitou, P.

P. Drobinski, P. H. Flamant, P. Salamitou, “Spectral diversity techniques for heterodyne Doppler lidar using hard target,” Appl. Opt. 39, 376–385 (2000).
[CrossRef]

P. Salamitou, A. Dabas, P. H. Flamant, “Simulation in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–506 (1995).
[CrossRef] [PubMed]

A. Dabas, P. H. Flamant, P. Salamitou, “Characterization of pulsed coherent Doppler LIDAR with the speckle effect,” Appl. Opt. 33, 6524–6532 (1994).
[CrossRef] [PubMed]

X. Favreau, A. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constituents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

Stickley, C. M.

Sugimoto, N.

Vodopia, S. N.

Wandinger, U.

X. Favreau, A. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constituents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

Weeks, A. R.

Zrnic, D. S.

D. S. Zrnic, “Estimation of spectral moments of weather echoes,” IEEE Trans. Geosci. Electron. GE-17, 113–127 (1979).
[CrossRef]

Adv. Phys.

E. Jakeman, C. J. Oliver, E. R. Pike, “Optical homodyne detection,” Adv. Phys. 24, 349–356 (1975).
[CrossRef]

Appl. Opt.

Boundary-Layer Meteorol.

P. Drobinski, R. A. Brown, P. H. Flamant, J. Pelon, “Evidence of organised large eddies by ground-based Doppler lidar, sonic anemometer and sodar,” Boundary-Layer Meteorol. 88, 343–361 (1998).
[CrossRef]

IEEE Trans. Geosci. Electron.

D. S. Zrnic, “Estimation of spectral moments of weather echoes,” IEEE Trans. Geosci. Electron. GE-17, 113–127 (1979).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer–Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31, 16–27 (1993).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Lett.

Other

J. D. Parsons, “Diversity techniques in communications receivers,” in Advanced Signal Processing, D. A. Creasey, ed. (Peregrinus, London, 1985), Chap. 6.
[CrossRef]

X. Favreau, A. Dabas, P. Delville, P. Salamitou, J. Pelon, P. H. Flamant, “Simultaneous range resolved measurements of atmospheric constituents and wind velocity by CO2 coherent lidar,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1996), pp. 467–470.

R. M. Hardesty, “Measurement of Range-resolved water-vapor concentration by coherent CO2 differential absorption,” (National Oceanic and Atmospheric Administration, Boulder, Colo., 1984), pp. 45–47.

P. Delville, X. Favreau, C. Loth, P. H. Flamant, “Assessment of heterodyne efficiency for coherent lidar applications,” in Proceedings of the Ninth conference on Coherent Laser Radar (Swedish Defense Research Establishment, Linköping, Sweden, 1997), pp. 152–155.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 6.

Ref. 15, Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the 10-µm HDL operated by the Laboratoire de Météorologie Dynamique: M’s, mirror; BS, beam splitter; L, lens.

Fig. 2
Fig. 2

Geometry of the four-element photomixer. A circular piece of MCT material (500-µm diameter) is divided by isolating stripes (25 µm) into photosensitive areas.

Fig. 3
Fig. 3

Simultaneous rf signals delivered by a four-element receiver from 1.8 to 2.4 km. The HDL schematic is displayed in Fig. 1; the HDL parameters are listed in Table 1.

Fig. 4
Fig. 4

SCP’s observed on a single rf signal (see Fig. 3, top). The SCP time duration is set between two successive minima.

Fig. 5
Fig. 5

Histogram of SCP time duration (see Figs. 3 and 4). The histogram is built on 200 shots or 800 independent samples. The mean value is 〈τ〉 = 0.49 µs. The correlation time derived by the IRRV method, 0.60 µs, is shown for comparison. PDF, probability-density function.

Fig. 6
Fig. 6

CNR (dB) on an aerosol distributed target in the planetary boundary layer as a function of range: coherent summation (from EGR technique) and incoherent summation. The signals account for four instantaneous rf signals delivered by the four-element receiver and N = 100 shots.

Fig. 7
Fig. 7

Histograms of normalized backscattered power and normalized standard deviation (σ p 0) on a 300-m range gate from 1.8 to 2.1 km: top, one rf signal; middle, incoherent summation of four instantaneous rf signals delivered by the four-element receiver (single shot); bottom, coherent summation of four instantaneous signals from the EGR technique (see Section 5). The theoretical probability-density function (chi-squared distribution) is displayed as solid curves for σ p 0 derived from experimental data.

Fig. 8
Fig. 8

Velocity estimates and rf signal from 3 to 3.6 km. Top, velocity estimates from the pulse-pair frequency estimator for 1, one rf signal and 4, four rf signals after phasing and coherent summation (EGR technique). The search bandwidth is ±12.5 MHz (or ±66 m s-1). Bottom, 1, amplitude of one rf signal and 4, coherent summation of four rf signals after phasing.

Fig. 9
Fig. 9

Histogram of velocity estimates from the pulse-pair frequency estimator: top, single lidar signal; middle, accumulation technique3; bottom, coherent summations (EGR technique) after phasing. The velocity estimates are conducted on four instantaneous rf signals (single shot) delivered by the four-element receiver. The Gaussian distributions are displayed as solid curves with the standard deviation derived from experimental data.

Tables (5)

Tables Icon

Table 1 Parameters of the 10-µm HDL Operated by the Laboratoire de Météorologie Dynamiquea

Tables Icon

Table 2 Characteristics of the Four Individual HgCdTe Detectors That Make Up the Four-Element Receivera

Tables Icon

Table 3 Correlation Coefficients between Two Simultaneous rf Signals (si, sj) Delivered by the Four-Element Photomixera

Tables Icon

Table 4 Comparison of CNR Obtained with the Four Different Summation Techniques at Three Ranges

Tables Icon

Table 5 Comparison of Backscattered Power Normalized Standard Deviation Obtained for Three Signal Processing Techniques

Metrics