Abstract

We investigated the intensity-dependent loss properties of nonlinear crystals by using subpicosecond laser pulses at 264 and 211 nm. Two-photon absorption coefficients for potassium dihydrogen phosphate, β-barium borate, and lithium triborate crystals were obtained from the intensity-dependent transmission measurements.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ringling, O. Kittelmann, F. Noack, G. Korn, J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
    [CrossRef] [PubMed]
  2. F. Seifert, J. Ringling, F. Noack, V. Petrov, O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,” Opt. Lett. 19, 1538–1540 (1994).
    [CrossRef] [PubMed]
  3. F. Rotermund, V. Petrov, “Generation of the fourth harmonic of a femtosecond Ti:sapphire laser,” Opt. Lett. 23, 1040–1042 (1998).
    [CrossRef]
  4. V. Petrov, F. Rotermund, F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8 · 4H2O,” Electron. Lett. 34, 1748–1750 (1998).
    [CrossRef]
  5. A. J. Taylor, R. B. Gibson, J. P. Roberts, “Two-photon absorption at 248 nm in ultraviolet window materials,” Opt. Lett. 13, 814–816 (1988).
    [CrossRef] [PubMed]
  6. P. Simon, H. Gerhardt, S. Szatmari, “Intensity-dependent loss properties of window materials at 248 nm,” Opt. Lett. 14, 1207–1209 (1989).
    [CrossRef] [PubMed]
  7. O. Kittelmann, J. Ringling, “Intensity-dependent transmission properties of window materials at 193-nm irradiation,” Opt. Lett. 19, 2053–2055 (1994).
    [CrossRef] [PubMed]
  8. P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
    [CrossRef]
  9. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
    [CrossRef]
  10. A. Dubietis, G. Tamošauskas, A. Varanavičius, G. Valiulis, R. Danielius, “Highly efficient subpicosecond pulse generation at 211 nm,” J. Opt. Soc. Am. B 17, 48–52 (2000).
    [CrossRef]
  11. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996).
  12. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials (Wiley, New York, 1997).
  13. G. G. Gurzadyan, R. K. Ispiryan, “Two-photon absorption peculiarities of potassium dihydrogen phosphate crystal at 216 nm,” Appl. Phys. Lett. 59, 630–631 (1991).
    [CrossRef]

2000

1998

F. Rotermund, V. Petrov, “Generation of the fourth harmonic of a femtosecond Ti:sapphire laser,” Opt. Lett. 23, 1040–1042 (1998).
[CrossRef]

V. Petrov, F. Rotermund, F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8 · 4H2O,” Electron. Lett. 34, 1748–1750 (1998).
[CrossRef]

1996

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

1994

1993

1991

G. G. Gurzadyan, R. K. Ispiryan, “Two-photon absorption peculiarities of potassium dihydrogen phosphate crystal at 216 nm,” Appl. Phys. Lett. 59, 630–631 (1991).
[CrossRef]

1989

1988

1978

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
[CrossRef]

Bechtel, J. H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
[CrossRef]

Bloembergen, N.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
[CrossRef]

Danielius, R.

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Dubietis, A.

Gerhardt, H.

Gibson, R. B.

Gurzadyan, G. G.

G. G. Gurzadyan, R. K. Ispiryan, “Two-photon absorption peculiarities of potassium dihydrogen phosphate crystal at 216 nm,” Appl. Phys. Lett. 59, 630–631 (1991).
[CrossRef]

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Ispiryan, R. K.

G. G. Gurzadyan, R. K. Ispiryan, “Two-photon absorption peculiarities of potassium dihydrogen phosphate crystal at 216 nm,” Appl. Phys. Lett. 59, 630–631 (1991).
[CrossRef]

Kittelmann, O.

Korn, G.

Liu, P.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
[CrossRef]

Lotem, H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
[CrossRef]

Nikogosyan, D. N.

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials (Wiley, New York, 1997).

Noack, F.

Petrov, V.

Ringling, J.

Roberts, J. P.

Rotermund, F.

V. Petrov, F. Rotermund, F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8 · 4H2O,” Electron. Lett. 34, 1748–1750 (1998).
[CrossRef]

F. Rotermund, V. Petrov, “Generation of the fourth harmonic of a femtosecond Ti:sapphire laser,” Opt. Lett. 23, 1040–1042 (1998).
[CrossRef]

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Seifert, F.

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Simon, P.

Smith, W. L.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
[CrossRef]

Squier, J.

Sutherland, R. L.

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996).

Szatmari, S.

Tamošauskas, G.

Taylor, A. J.

Valiulis, G.

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

Varanavicius, A.

Appl. Phys. Lett.

G. G. Gurzadyan, R. K. Ispiryan, “Two-photon absorption peculiarities of potassium dihydrogen phosphate crystal at 216 nm,” Appl. Phys. Lett. 59, 630–631 (1991).
[CrossRef]

Electron. Lett.

V. Petrov, F. Rotermund, F. Noack, “Generation of femtosecond pulses down to 166 nm by sum-frequency mixing in KB5O8 · 4H2O,” Electron. Lett. 34, 1748–1750 (1998).
[CrossRef]

IEEE J. Quantum Electron.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. B

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620–4631 (1978).
[CrossRef]

Other

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996).

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials (Wiley, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for the measurement of absolute TPA coefficient values.

Fig. 2
Fig. 2

Intensity-dependent transmission curves for (a) KDP, (b) BBO, (c) LBO crystal samples measured at 264 nm. The symbols depict the experimental data, and the solid curves show the best numerical fit.

Fig. 3
Fig. 3

Intensity-dependent transmission curves for (a) KDP, (b) BBO, (c) LBO crystal samples at 211 nm. The symbols depict the experimental data, and the solid curves show the best numerical fit.

Tables (2)

Tables Icon

Table 1 Numerically Evaluated Linear Transmission Coefficients α in Inverse Centimeters of Nonlinear Crystals

Tables Icon

Table 2 TPA Coefficients of Nonlinear Crystals

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T=Eout/Ein.
Ein=0r0 2πrdr - Iinr, tdt,
Eout=0r0 2πrdr - Ioutr, tdt,
Iin=I0 exp-4 ln 2-t/τ2-r/d2.
I0=4 ln 2π3/2Ed2τ.
T=16ln 231-R2 exp-αLπτd21-exp-4 ln 2 r02d20r0 rdr -×1-exp-4 ln 2t2τ2-r02d21+βα1-exp-αLI0 exp-4 ln 2t2τ2-r02d2dt,
T0=1-R2 exp-αL.

Metrics