Abstract

We demonstrate optical power limiting by what we believe to be a new mechanism of nonlinear absorption, which involves a quasi-resonant ground-state absorption that is either phonon assisted or assisted by the presence of defect sites (tail absorption). Such a mechanism provides high transmittance at low intensity yet optical limiting under cw conditions. The sample used was a novel solgel-processed Er3+-doped multicomponent silica glass. In this system the nonlinear absorption process is achieved because the resonant excited-state (4 I 13/24S 3/2) absorption cross section is larger than the quasi-resonant ground-state (4 I 15/24I 9/2) absorption cross section.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
    [CrossRef]
  2. See, for example, R. Crane, K. Lewis, E. Van Stryland, M. Khoshnevisan, eds., Materials for Optical Limiting, Mater. Res. Soc. Symp. Proc.374 (1995); R. Sutherland, R. Pachter, P. Hood, D. Hagan, K. Lewis, J. Perry, eds., Materials for Optical Limiting II, Mater. Res. Soc. Symp. Proc.479 (1997).
  3. J. D. Bhawalkar, G. S. He, P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041–1070 (1996);M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
    [CrossRef] [PubMed]
  4. L. Huff, L. G. DeShazer, “Saturation of optical transitions in organic compounds by laser flux,” J. Opt. Soc. Am. 60, 157–165 (1970);D. J. Harter, M. L. Shand, Y. B. Band, “Power/energy limiter using reverse saturable absorption,” J. Appl. Phys. 56, 865–868 (1984); Y. P. Sun, J. E. Riggs, “Organic and inorganic optical limiting materials: from fullerenes to nanoparticles,” Int. Rev. Phys. Chem. 18, 43–90 (1999).
    [CrossRef]
  5. C. B. de Araújo, G. S. Maciel, N. Rakov, Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999).
    [CrossRef]
  6. A. Biswas, C. S. Friend, G. S. Maciel, P. N. Prasad, “Optical properties of Europium doped gels during densification,” J. Non-Cryst. Solids 261, 9–14 (2000).
    [CrossRef]
  7. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962); G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
    [CrossRef]
  8. M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
    [CrossRef]
  9. R. C. Stoneman, J. G. Lynn, L. Esterowitz, “Direct upper-state pumping of the 2.8 µm Er3+:YLF laser,” IEEE J. Quantum Electron. 28, 1041–1045 (1992).
    [CrossRef]
  10. M. P. Joshi, J. Swiatkiewicz, F. Xu, P. N. Prasad, B. A. Reinhardt, R. Kannan, “Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting,” Opt. Lett. 23, 1742–1744 (1998).
    [CrossRef]

2000 (1)

A. Biswas, C. S. Friend, G. S. Maciel, P. N. Prasad, “Optical properties of Europium doped gels during densification,” J. Non-Cryst. Solids 261, 9–14 (2000).
[CrossRef]

1999 (1)

C. B. de Araújo, G. S. Maciel, N. Rakov, Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999).
[CrossRef]

1998 (1)

1996 (1)

J. D. Bhawalkar, G. S. He, P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041–1070 (1996);M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

1993 (1)

L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

1992 (1)

R. C. Stoneman, J. G. Lynn, L. Esterowitz, “Direct upper-state pumping of the 2.8 µm Er3+:YLF laser,” IEEE J. Quantum Electron. 28, 1041–1045 (1992).
[CrossRef]

1983 (1)

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

1970 (1)

1962 (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962); G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Bhawalkar, J. D.

J. D. Bhawalkar, G. S. He, P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041–1070 (1996);M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Biswas, A.

A. Biswas, C. S. Friend, G. S. Maciel, P. N. Prasad, “Optical properties of Europium doped gels during densification,” J. Non-Cryst. Solids 261, 9–14 (2000).
[CrossRef]

Boggess, T. F.

L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Brown, R. N.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

de Araújo, C. B.

C. B. de Araújo, G. S. Maciel, N. Rakov, Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999).
[CrossRef]

DeShazer, L. G.

Drexhage, M. G.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Esterowitz, L.

R. C. Stoneman, J. G. Lynn, L. Esterowitz, “Direct upper-state pumping of the 2.8 µm Er3+:YLF laser,” IEEE J. Quantum Electron. 28, 1041–1045 (1992).
[CrossRef]

Friend, C. S.

A. Biswas, C. S. Friend, G. S. Maciel, P. N. Prasad, “Optical properties of Europium doped gels during densification,” J. Non-Cryst. Solids 261, 9–14 (2000).
[CrossRef]

He, G. S.

J. D. Bhawalkar, G. S. He, P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041–1070 (1996);M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Huff, L.

Joshi, M. P.

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962); G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Kannan, R.

Lynn, J. G.

R. C. Stoneman, J. G. Lynn, L. Esterowitz, “Direct upper-state pumping of the 2.8 µm Er3+:YLF laser,” IEEE J. Quantum Electron. 28, 1041–1045 (1992).
[CrossRef]

Maciel, G. S.

A. Biswas, C. S. Friend, G. S. Maciel, P. N. Prasad, “Optical properties of Europium doped gels during densification,” J. Non-Cryst. Solids 261, 9–14 (2000).
[CrossRef]

C. B. de Araújo, G. S. Maciel, N. Rakov, Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999).
[CrossRef]

Messaddeq, Y.

C. B. de Araújo, G. S. Maciel, N. Rakov, Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999).
[CrossRef]

Prasad, P. N.

A. Biswas, C. S. Friend, G. S. Maciel, P. N. Prasad, “Optical properties of Europium doped gels during densification,” J. Non-Cryst. Solids 261, 9–14 (2000).
[CrossRef]

M. P. Joshi, J. Swiatkiewicz, F. Xu, P. N. Prasad, B. A. Reinhardt, R. Kannan, “Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting,” Opt. Lett. 23, 1742–1744 (1998).
[CrossRef]

J. D. Bhawalkar, G. S. He, P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041–1070 (1996);M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Rakov, N.

C. B. de Araújo, G. S. Maciel, N. Rakov, Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999).
[CrossRef]

Reinhardt, B. A.

Shinn, M. D.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Sibley, W. A.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Stoneman, R. C.

R. C. Stoneman, J. G. Lynn, L. Esterowitz, “Direct upper-state pumping of the 2.8 µm Er3+:YLF laser,” IEEE J. Quantum Electron. 28, 1041–1045 (1992).
[CrossRef]

Swiatkiewicz, J.

Tutt, L. W.

L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Xu, F.

IEEE J. Quantum Electron. (1)

R. C. Stoneman, J. G. Lynn, L. Esterowitz, “Direct upper-state pumping of the 2.8 µm Er3+:YLF laser,” IEEE J. Quantum Electron. 28, 1041–1045 (1992).
[CrossRef]

J. Non-Cryst. Solids (2)

C. B. de Araújo, G. S. Maciel, N. Rakov, Y. Messaddeq, “Giant nonlinear absorption in Er3+-doped fluoroindate glass,” J. Non-Cryst. Solids 247, 209–214 (1999).
[CrossRef]

A. Biswas, C. S. Friend, G. S. Maciel, P. N. Prasad, “Optical properties of Europium doped gels during densification,” J. Non-Cryst. Solids 261, 9–14 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962); G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962).
[CrossRef]

Phys. Rev. B (1)

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Prog. Quantum Electron. (1)

L. W. Tutt, T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Rep. Prog. Phys. (1)

J. D. Bhawalkar, G. S. He, P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041–1070 (1996);M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998).
[CrossRef] [PubMed]

Other (1)

See, for example, R. Crane, K. Lewis, E. Van Stryland, M. Khoshnevisan, eds., Materials for Optical Limiting, Mater. Res. Soc. Symp. Proc.374 (1995); R. Sutherland, R. Pachter, P. Hood, D. Hagan, K. Lewis, J. Perry, eds., Materials for Optical Limiting II, Mater. Res. Soc. Symp. Proc.479 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Absorption spectra of the multicomponent solgel silica glass doped with Er3+ (0.75 mol.%). The thickness of the sample is L = 1 mm. Inset, for visualization purpose the absorption band centered at 790 nm is shown on a magnified scale.

Fig. 2
Fig. 2

Simplified energy-level scheme showing the excitation pathway used: solid upward arrows, excitation at 840 nm; dotted downward arrows, population relaxation from level 4 I 9/2 to levels 4 I 11/2 and 4 I 13/2.

Fig. 3
Fig. 3

Transmittance as a function of excitation intensity measured at room temperature. The sample is an Er3+-doped multicomponent solgel silica glass (L = 1 mm). The excitation source is a cw Ti:sapphire laser operating at λ = 840 nm. The curve represents the best-fit curve with the experimental data by use of I g = 3 × 105 W/cm2 and σ e = 2 × 10-20 cm2.

Fig. 4
Fig. 4

Upconversion emission in the 500–600-nm range, detected at room temperature. The main peaks at 524 and 534 nm correspond to the transitions from level 2 H 11/2 to the ground-state multiplet 4 I 15/2. The main peaks at 548 and 558 nm correspond to the transitions from level 4 S 3/2 to the ground-state multiplet 4 I 15/2. The excitation wavelength was 840 nm.

Fig. 5
Fig. 5

Dynamics of the upconverted fluorescence signal at 548 nm (4 S 3/24 I 15/2) for an excitation intensity of 2.7 × 104 W/cm2, pumping at λ = 840 nm, at room temperature. The curve represent the theoretical prediction for the dynamics of the population at level 4 S 3/2 for a ground-state absorption cross section given by Eq. (1) with I g = 3 × 105 W/cm2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σgI=σg1+Ig/I.
dIdz=-σgIn1I-σen2INI,
dn1dt=-R1n1+γ21n2+γ31n3+γ41n4,
dn2dt=-R2n2+γ32n3+γ42n4-γ21n2,
dn3dt=R1n1+γ43n4-γ31+γ32n3,
dn4dt=R2n2-γ41+γ42+γ43n4.

Metrics