Abstract

The lasing performance of single-cavity and double-cavity Tm,Ho:YLF lasers was measured experimentally. The maximum, single-longitudinal mode output power for the double-cavity laser was 30 mW, whereas for the single-cavity laser it was 7 mW. We determined the frequency stabilities to be 600 Hz for a single-cavity laser and 300 Hz for a double-cavity laser, by measuring the fluctuation of a self-heterodyne beat signal for a 1.5-µs delay time over a 10-min integrated period. In addition, we obtained a 15-GHz frequency tuning range for the double-cavity laser by changing its cavity length under maximum stable conditions at room temperature.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. F. Elder, M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP, and Tm,Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
    [CrossRef]
  2. I. K. Razunova, A. M. Tkachuk, D. I. Mironov, A. A. Nikitichev, “Spectral intensities and stimulated radiation of Tm3+:YLF crystals,” Opt. Spectrosc. (USSR) 81, 230–239 (1996).
  3. C. He, D. K. Killinger, “Dual-polarization modes and self-heterodyne noise in a single-frequency 2.1-µm microchip Ho,Tm:YAG laser,” Opt. Lett. 19, 396–398 (1994).
    [PubMed]
  4. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
    [CrossRef]
  5. F. Matsuzaka, T. Yokozawa, H. Hara, “Saturation parameter and small-signal gain of a laser-diode-pumped Tm:YAG laser,” Appl. Opt. 37, 5710–5712 (1998).
    [CrossRef]
  6. A. Finch, J. H. Flint, D. M. Rines, “2.5-Watt single-frequency CW Tm,Ho:YLF ring laser,” in Advanced Solid-State lasers, S. A. Payne, C. Pollock, eds., Vol. 15 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 312–314.
  7. J. Yu, U. N. Singh, N. P. Barnes, M. Petros, “125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
    [CrossRef]
  8. J. P. Deyst, G. J. Koch, M. K. Storm, “Diode-pumped single frequency Ho:Tm:YLF,” in Advanced Solid-State lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 468–470.
  9. T. Yokozawa, J. Izawa, H. Hara, “Mode control of a Tm:YLF microchip laser by a multiple resonator,” Opt. Commun. 145, 98–100 (1998).
    [CrossRef]

1998 (4)

I. F. Elder, M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP, and Tm,Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

F. Matsuzaka, T. Yokozawa, H. Hara, “Saturation parameter and small-signal gain of a laser-diode-pumped Tm:YAG laser,” Appl. Opt. 37, 5710–5712 (1998).
[CrossRef]

J. Yu, U. N. Singh, N. P. Barnes, M. Petros, “125-mJ diode-pumped injection-seeded Ho:Tm:YLF laser,” Opt. Lett. 23, 780–782 (1998).
[CrossRef]

T. Yokozawa, J. Izawa, H. Hara, “Mode control of a Tm:YLF microchip laser by a multiple resonator,” Opt. Commun. 145, 98–100 (1998).
[CrossRef]

1996 (1)

I. K. Razunova, A. M. Tkachuk, D. I. Mironov, A. A. Nikitichev, “Spectral intensities and stimulated radiation of Tm3+:YLF crystals,” Opt. Spectrosc. (USSR) 81, 230–239 (1996).

1994 (1)

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Barnes, N. P.

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Deyst, J. P.

J. P. Deyst, G. J. Koch, M. K. Storm, “Diode-pumped single frequency Ho:Tm:YLF,” in Advanced Solid-State lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 468–470.

Elder, I. F.

I. F. Elder, M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP, and Tm,Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

Finch, A.

A. Finch, J. H. Flint, D. M. Rines, “2.5-Watt single-frequency CW Tm,Ho:YLF ring laser,” in Advanced Solid-State lasers, S. A. Payne, C. Pollock, eds., Vol. 15 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 312–314.

Flint, J. H.

A. Finch, J. H. Flint, D. M. Rines, “2.5-Watt single-frequency CW Tm,Ho:YLF ring laser,” in Advanced Solid-State lasers, S. A. Payne, C. Pollock, eds., Vol. 15 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 312–314.

Hara, H.

T. Yokozawa, J. Izawa, H. Hara, “Mode control of a Tm:YLF microchip laser by a multiple resonator,” Opt. Commun. 145, 98–100 (1998).
[CrossRef]

F. Matsuzaka, T. Yokozawa, H. Hara, “Saturation parameter and small-signal gain of a laser-diode-pumped Tm:YAG laser,” Appl. Opt. 37, 5710–5712 (1998).
[CrossRef]

He, C.

Izawa, J.

T. Yokozawa, J. Izawa, H. Hara, “Mode control of a Tm:YLF microchip laser by a multiple resonator,” Opt. Commun. 145, 98–100 (1998).
[CrossRef]

Killinger, D. K.

Koch, G. J.

J. P. Deyst, G. J. Koch, M. K. Storm, “Diode-pumped single frequency Ho:Tm:YLF,” in Advanced Solid-State lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 468–470.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Matsuzaka, F.

Mironov, D. I.

I. K. Razunova, A. M. Tkachuk, D. I. Mironov, A. A. Nikitichev, “Spectral intensities and stimulated radiation of Tm3+:YLF crystals,” Opt. Spectrosc. (USSR) 81, 230–239 (1996).

Nikitichev, A. A.

I. K. Razunova, A. M. Tkachuk, D. I. Mironov, A. A. Nikitichev, “Spectral intensities and stimulated radiation of Tm3+:YLF crystals,” Opt. Spectrosc. (USSR) 81, 230–239 (1996).

Payne, M. J. P.

I. F. Elder, M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP, and Tm,Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Petros, M.

Razunova, I. K.

I. K. Razunova, A. M. Tkachuk, D. I. Mironov, A. A. Nikitichev, “Spectral intensities and stimulated radiation of Tm3+:YLF crystals,” Opt. Spectrosc. (USSR) 81, 230–239 (1996).

Rines, D. M.

A. Finch, J. H. Flint, D. M. Rines, “2.5-Watt single-frequency CW Tm,Ho:YLF ring laser,” in Advanced Solid-State lasers, S. A. Payne, C. Pollock, eds., Vol. 15 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 312–314.

Singh, U. N.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Storm, M. K.

J. P. Deyst, G. J. Koch, M. K. Storm, “Diode-pumped single frequency Ho:Tm:YLF,” in Advanced Solid-State lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 468–470.

Tkachuk, A. M.

I. K. Razunova, A. M. Tkachuk, D. I. Mironov, A. A. Nikitichev, “Spectral intensities and stimulated radiation of Tm3+:YLF crystals,” Opt. Spectrosc. (USSR) 81, 230–239 (1996).

Yokozawa, T.

T. Yokozawa, J. Izawa, H. Hara, “Mode control of a Tm:YLF microchip laser by a multiple resonator,” Opt. Commun. 145, 98–100 (1998).
[CrossRef]

F. Matsuzaka, T. Yokozawa, H. Hara, “Saturation parameter and small-signal gain of a laser-diode-pumped Tm:YAG laser,” Appl. Opt. 37, 5710–5712 (1998).
[CrossRef]

Yu, J.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Opt. Commun. (2)

I. F. Elder, M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP, and Tm,Ho:YLF,” Opt. Commun. 145, 329–339 (1998).
[CrossRef]

T. Yokozawa, J. Izawa, H. Hara, “Mode control of a Tm:YLF microchip laser by a multiple resonator,” Opt. Commun. 145, 98–100 (1998).
[CrossRef]

Opt. Lett. (2)

Opt. Spectrosc. (USSR) (1)

I. K. Razunova, A. M. Tkachuk, D. I. Mironov, A. A. Nikitichev, “Spectral intensities and stimulated radiation of Tm3+:YLF crystals,” Opt. Spectrosc. (USSR) 81, 230–239 (1996).

Other (2)

A. Finch, J. H. Flint, D. M. Rines, “2.5-Watt single-frequency CW Tm,Ho:YLF ring laser,” in Advanced Solid-State lasers, S. A. Payne, C. Pollock, eds., Vol. 15 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 312–314.

J. P. Deyst, G. J. Koch, M. K. Storm, “Diode-pumped single frequency Ho:Tm:YLF,” in Advanced Solid-State lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 468–470.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for our experiments with a Tm,Ho:YLF microchip laser for (a) a single-cavity configuration and (b) a double-cavity configuration.

Fig. 2
Fig. 2

Near-field profile of a Tm,Ho:YLF laser with a double-cavity configuration. Higher-order transverse-mode oscillation was not observed.

Fig. 3
Fig. 3

Output power of a Tm,Ho:YLF laser for both cavity configurations in single-mode oscillation as a function of absorbing power. The crystal temperature was maintained at room temperature during the experiments.

Fig. 4
Fig. 4

Stability of the single-mode oscillation for both cavity configurations: (a) a beat frequency spectrum integrated for 10 min and (b) the fluctuation width (FWHM) as a function of absorbing power. The frequency stability was measured by a self-beating method. When we conducted the experiments all the experimental conditions were fixed.

Fig. 5
Fig. 5

Tunability of the oscillation wavelength for the double-cavity configuration as a function of output power.

Fig. 6
Fig. 6

Tunability of the oscillation wavelength and maximum single-mode output power for the single-cavity configuration as a function of crystal temperature.

Metrics