Abstract

It is suggested here that the lack of total image correction that is typical in adaptive optics (AO) imaging can be attributed in part to blur derived from small-angle scatter of light by aerosols, known also as the adjacency effect, especially as it is a well-established fact that such atmospheric blur is dominant in satellite imagery and the shape of the modulation transfer function after AO correction is strikingly similar to the unique shape of the aerosol modulation transfer function. Further investigation of AO systems to confirm this would aid in and improve image restoration.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-M. Conan, L. M. Mugnier, T. Fusco, V. Michau, G. Rousset, “Myopic deconvolution of adaptive optics images by use of object and point-spread function power spectra,” Appl. Opt. 37, 4614–4622 (1998).
    [CrossRef]
  2. G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, L29–L32 (1990).
  3. F. Rigaut, G. Rousset, P. Kern, J.-C. Fontanella, J-P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).
  4. M. C. Roggemann, C. L. Matson, “Power spectrum and Fourier phase spectrum estimation by using fully and partially compensating adaptive optics and bispectrum postprocessing,” J. Opt. Soc. Am. A 9, 1525–1535 (1992).
    [CrossRef]
  5. J.-M. Conan, P.-Y. Madec, G. Rousset, “Image formation in adaptive optics partial correction,” in Active and Adaptive Optics, F. Merkle, ed., Vol. 48 of ESO Conference and Workshop Proceedings (European Southern Observatory, Garching, Germany, 1993), pp. 181–186.
  6. J.-M. Conan, “Étude de la correction partielle en optique adaptative,” Ph.D. dissertation (Université de Paris XI, Orsay, France, 1994).
  7. N. S. Kopeika, I. Dror, D. Sadot, “The causes of atmospheric blur: comment on “Atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am. A 15, 3097–3106 (1998).
    [CrossRef]
  8. G. R. Ochs, T. Wang, R. S. Lawrence, S. F. Clifford, “Refractive-turbulence profiles measured by one-dimensional spatial filtering of scintillations,” Appl. Opt. 15, 2504–2510 (1978).
    [CrossRef]
  9. L. E. Herman, “Atmospheric optics,” in Handbook of Geophysics and Space Environments, S. C. Valley, ed. (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1965), Sec. 7.1; see also succeeding handbook editions.
  10. D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
    [CrossRef]
  11. N. S. Kopeika, A System Engineering Approach to Imaging, Vol. PM38 of SPIE Press Monograph Series (SPIE Press, Bellingham, Wash., 1998).
  12. D. Sadot, N. S. Kopeika, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol MTF,” J. Opt. Soc. Am. A 10, 172–179 (1993).
    [CrossRef]
  13. D. Sadot, G. Kitron, N. Kitron, N. S. Kopeika, “Thermal imaging through the atmosphere: atmospheric MTF theory and verification,” Opt. Eng. 33, 880–887 (1994).
    [CrossRef]
  14. D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994).
    [CrossRef]
  15. I. Dror, N. S. Kopeika, “Aerosol and turbulence modulation transfer functions: comparison measurements in the open atmosphere,” Opt. Lett. 17, 1532–1534 (1992).
    [CrossRef] [PubMed]
  16. D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 487–498 (1994).
    [CrossRef]
  17. I. Dror, N. S. Kopeika, “Experimental comparison of turbulence modulation transfer function and aerosol modulation transfer function through the open atmosphere,” J. Opt. Soc. Am. A 12, 970–980 (1995).
    [CrossRef]
  18. N. S. Kopeika, D. Sadot, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function: reply to comment,” J. Opt. Soc. Am. A 12, 1017–1023 (1995).
    [CrossRef]
  19. R. Melamed, Y. Yitzhaky, N. S. Kopeika, S. R. Rotman, “Experimental comparison of three target acquisition models,” Opt. Eng. 37, 1902–1913 (1998).
    [CrossRef]
  20. D. Sadot, R. Rosenfeld, G. Shuker, N. S. Kopeika, “High resolution restoration of images distorted by the atmosphere, based upon average atmospheric MTF,” Opt. Eng. 34, 1799–1807 (1995).
    [CrossRef]
  21. M. C. Roggemann, B. Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla., 1996).
  22. R. R. Beland, “Propagation through atmospheric optical turbulence,” in Atmospheric Propagation of Radiation, F. G. Smith, ed., Vol. 2 of the Infrared and Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1993), Chap. 2.
  23. M. G. Miller, P. L. Zieske, “Turbulence environment characterization,” (Rome Air Development Center, Rome, N.Y., 1979).
  24. R. R. Beland, J. H. Brown, R. E. Good, E. A. Murphy, “Optical turbulence characterization of AMOS, 1985,” (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).
  25. R. E. Good, R. R. Beland, E. A. Murphy, J. H. Brown, E. M. Dewan, “Atmospheric models of optical turbulence,” in Modeling of the Atmosphere, L. S. Rothman, ed., Proc. SPIE928, 165–186 (1988).
  26. F. P. Battles, E. A. Murphy, J. P. Noonan, “The contribution of atmospheric density to the drop-off rage of Cn2,” Phys. Scr.151–153 (1988).
  27. J. H. Brown, R. R. Beland, “A site comparison of optical turbulence in the lower stratosphere at night using thermosonde data,” Phys. Scr. 37, 424–426 (1988).
    [CrossRef]
  28. J. H. Brown, R. R. Beland, “A deterministic temperature for stratospheric optical turbulence,” Phys. Scr. 37, 419–423 (1988).
    [CrossRef]
  29. G. C. Valley, “Isoplanatic degradation of tilt correction and short-term imaging systems,” Appl. Opt. 19, 574–577 (1980).
    [CrossRef] [PubMed]
  30. P. B. Ulrich, “Hufnagel–Valley profiles for specified values of the coherence length and isoplanatic angle,” (W. J. Schafer Associates, New York, 1988).
  31. T. E. Van Zandt, J. L. Green, K. S. Gage, W. L. Clark, “Vertical profiles of refractivity turbulence structure constant: comparison of observations by the Sunset Radar with a new theoretical model,” Radio Sci. 13, 819–828 (1978).
    [CrossRef]
  32. J. M. Warnock, T. E. Van Zandt, “A statistical model to estimate the refractivity turbulence structure constant Cn2 in the free atmosphere,” (NOAA Environmental Research Laboratory, Boulder, Colo., 1985).
  33. C. E. Coulman, J. Vernin, Y. Coqueugnoit, J. L. Caccia, “Outer scale of turbulence appropriate to modeling refractive-index profiles,” Appl. Opt. 27, 155–160 (1988).
    [CrossRef] [PubMed]

1998 (3)

1995 (3)

1994 (3)

D. Sadot, G. Kitron, N. Kitron, N. S. Kopeika, “Thermal imaging through the atmosphere: atmospheric MTF theory and verification,” Opt. Eng. 33, 880–887 (1994).
[CrossRef]

D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994).
[CrossRef]

D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 487–498 (1994).
[CrossRef]

1993 (1)

1992 (3)

1991 (1)

F. Rigaut, G. Rousset, P. Kern, J.-C. Fontanella, J-P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).

1990 (1)

G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, L29–L32 (1990).

1988 (4)

F. P. Battles, E. A. Murphy, J. P. Noonan, “The contribution of atmospheric density to the drop-off rage of Cn2,” Phys. Scr.151–153 (1988).

J. H. Brown, R. R. Beland, “A site comparison of optical turbulence in the lower stratosphere at night using thermosonde data,” Phys. Scr. 37, 424–426 (1988).
[CrossRef]

J. H. Brown, R. R. Beland, “A deterministic temperature for stratospheric optical turbulence,” Phys. Scr. 37, 419–423 (1988).
[CrossRef]

C. E. Coulman, J. Vernin, Y. Coqueugnoit, J. L. Caccia, “Outer scale of turbulence appropriate to modeling refractive-index profiles,” Appl. Opt. 27, 155–160 (1988).
[CrossRef] [PubMed]

1980 (1)

1978 (2)

T. E. Van Zandt, J. L. Green, K. S. Gage, W. L. Clark, “Vertical profiles of refractivity turbulence structure constant: comparison of observations by the Sunset Radar with a new theoretical model,” Radio Sci. 13, 819–828 (1978).
[CrossRef]

G. R. Ochs, T. Wang, R. S. Lawrence, S. F. Clifford, “Refractive-turbulence profiles measured by one-dimensional spatial filtering of scintillations,” Appl. Opt. 15, 2504–2510 (1978).
[CrossRef]

Battles, F. P.

F. P. Battles, E. A. Murphy, J. P. Noonan, “The contribution of atmospheric density to the drop-off rage of Cn2,” Phys. Scr.151–153 (1988).

Beland, R. R.

J. H. Brown, R. R. Beland, “A deterministic temperature for stratospheric optical turbulence,” Phys. Scr. 37, 419–423 (1988).
[CrossRef]

J. H. Brown, R. R. Beland, “A site comparison of optical turbulence in the lower stratosphere at night using thermosonde data,” Phys. Scr. 37, 424–426 (1988).
[CrossRef]

R. R. Beland, “Propagation through atmospheric optical turbulence,” in Atmospheric Propagation of Radiation, F. G. Smith, ed., Vol. 2 of the Infrared and Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1993), Chap. 2.

R. R. Beland, J. H. Brown, R. E. Good, E. A. Murphy, “Optical turbulence characterization of AMOS, 1985,” (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).

R. E. Good, R. R. Beland, E. A. Murphy, J. H. Brown, E. M. Dewan, “Atmospheric models of optical turbulence,” in Modeling of the Atmosphere, L. S. Rothman, ed., Proc. SPIE928, 165–186 (1988).

Bergel, I.

D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994).
[CrossRef]

Boyer, C.

G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, L29–L32 (1990).

Brown, J. H.

J. H. Brown, R. R. Beland, “A site comparison of optical turbulence in the lower stratosphere at night using thermosonde data,” Phys. Scr. 37, 424–426 (1988).
[CrossRef]

J. H. Brown, R. R. Beland, “A deterministic temperature for stratospheric optical turbulence,” Phys. Scr. 37, 419–423 (1988).
[CrossRef]

R. E. Good, R. R. Beland, E. A. Murphy, J. H. Brown, E. M. Dewan, “Atmospheric models of optical turbulence,” in Modeling of the Atmosphere, L. S. Rothman, ed., Proc. SPIE928, 165–186 (1988).

R. R. Beland, J. H. Brown, R. E. Good, E. A. Murphy, “Optical turbulence characterization of AMOS, 1985,” (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).

Caccia, J. L.

Clark, W. L.

T. E. Van Zandt, J. L. Green, K. S. Gage, W. L. Clark, “Vertical profiles of refractivity turbulence structure constant: comparison of observations by the Sunset Radar with a new theoretical model,” Radio Sci. 13, 819–828 (1978).
[CrossRef]

Clifford, S. F.

Conan, J.-M.

J.-M. Conan, L. M. Mugnier, T. Fusco, V. Michau, G. Rousset, “Myopic deconvolution of adaptive optics images by use of object and point-spread function power spectra,” Appl. Opt. 37, 4614–4622 (1998).
[CrossRef]

J.-M. Conan, “Étude de la correction partielle en optique adaptative,” Ph.D. dissertation (Université de Paris XI, Orsay, France, 1994).

J.-M. Conan, P.-Y. Madec, G. Rousset, “Image formation in adaptive optics partial correction,” in Active and Adaptive Optics, F. Merkle, ed., Vol. 48 of ESO Conference and Workshop Proceedings (European Southern Observatory, Garching, Germany, 1993), pp. 181–186.

Coqueugnoit, Y.

Coulman, C. E.

Dewan, E. M.

R. E. Good, R. R. Beland, E. A. Murphy, J. H. Brown, E. M. Dewan, “Atmospheric models of optical turbulence,” in Modeling of the Atmosphere, L. S. Rothman, ed., Proc. SPIE928, 165–186 (1988).

Dinur, N.

D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 487–498 (1994).
[CrossRef]

Dror, I.

Dvir, A.

D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994).
[CrossRef]

Fontanella, J.-C.

F. Rigaut, G. Rousset, P. Kern, J.-C. Fontanella, J-P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).

G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, L29–L32 (1990).

Fusco, T.

Gaffard, J.-P.

G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, L29–L32 (1990).

Gaffard, J-P.

F. Rigaut, G. Rousset, P. Kern, J.-C. Fontanella, J-P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).

Gage, K. S.

T. E. Van Zandt, J. L. Green, K. S. Gage, W. L. Clark, “Vertical profiles of refractivity turbulence structure constant: comparison of observations by the Sunset Radar with a new theoretical model,” Radio Sci. 13, 819–828 (1978).
[CrossRef]

Gigan, P.

G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, L29–L32 (1990).

Good, R. E.

R. R. Beland, J. H. Brown, R. E. Good, E. A. Murphy, “Optical turbulence characterization of AMOS, 1985,” (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).

R. E. Good, R. R. Beland, E. A. Murphy, J. H. Brown, E. M. Dewan, “Atmospheric models of optical turbulence,” in Modeling of the Atmosphere, L. S. Rothman, ed., Proc. SPIE928, 165–186 (1988).

Green, J. L.

T. E. Van Zandt, J. L. Green, K. S. Gage, W. L. Clark, “Vertical profiles of refractivity turbulence structure constant: comparison of observations by the Sunset Radar with a new theoretical model,” Radio Sci. 13, 819–828 (1978).
[CrossRef]

Herman, L. E.

L. E. Herman, “Atmospheric optics,” in Handbook of Geophysics and Space Environments, S. C. Valley, ed. (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1965), Sec. 7.1; see also succeeding handbook editions.

Jagourel, P.

G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, L29–L32 (1990).

Kern, P.

F. Rigaut, G. Rousset, P. Kern, J.-C. Fontanella, J-P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).

G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, L29–L32 (1990).

Kitron, G.

D. Sadot, G. Kitron, N. Kitron, N. S. Kopeika, “Thermal imaging through the atmosphere: atmospheric MTF theory and verification,” Opt. Eng. 33, 880–887 (1994).
[CrossRef]

Kitron, N.

D. Sadot, G. Kitron, N. Kitron, N. S. Kopeika, “Thermal imaging through the atmosphere: atmospheric MTF theory and verification,” Opt. Eng. 33, 880–887 (1994).
[CrossRef]

Kopeika, N. S.

R. Melamed, Y. Yitzhaky, N. S. Kopeika, S. R. Rotman, “Experimental comparison of three target acquisition models,” Opt. Eng. 37, 1902–1913 (1998).
[CrossRef]

N. S. Kopeika, I. Dror, D. Sadot, “The causes of atmospheric blur: comment on “Atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am. A 15, 3097–3106 (1998).
[CrossRef]

N. S. Kopeika, D. Sadot, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function: reply to comment,” J. Opt. Soc. Am. A 12, 1017–1023 (1995).
[CrossRef]

D. Sadot, R. Rosenfeld, G. Shuker, N. S. Kopeika, “High resolution restoration of images distorted by the atmosphere, based upon average atmospheric MTF,” Opt. Eng. 34, 1799–1807 (1995).
[CrossRef]

I. Dror, N. S. Kopeika, “Experimental comparison of turbulence modulation transfer function and aerosol modulation transfer function through the open atmosphere,” J. Opt. Soc. Am. A 12, 970–980 (1995).
[CrossRef]

D. Sadot, G. Kitron, N. Kitron, N. S. Kopeika, “Thermal imaging through the atmosphere: atmospheric MTF theory and verification,” Opt. Eng. 33, 880–887 (1994).
[CrossRef]

D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 487–498 (1994).
[CrossRef]

D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994).
[CrossRef]

D. Sadot, N. S. Kopeika, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol MTF,” J. Opt. Soc. Am. A 10, 172–179 (1993).
[CrossRef]

I. Dror, N. S. Kopeika, “Aerosol and turbulence modulation transfer functions: comparison measurements in the open atmosphere,” Opt. Lett. 17, 1532–1534 (1992).
[CrossRef] [PubMed]

D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
[CrossRef]

N. S. Kopeika, A System Engineering Approach to Imaging, Vol. PM38 of SPIE Press Monograph Series (SPIE Press, Bellingham, Wash., 1998).

Lawrence, R. S.

Léna, P.

F. Rigaut, G. Rousset, P. Kern, J.-C. Fontanella, J-P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).

G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, L29–L32 (1990).

Madec, P.-Y.

J.-M. Conan, P.-Y. Madec, G. Rousset, “Image formation in adaptive optics partial correction,” in Active and Adaptive Optics, F. Merkle, ed., Vol. 48 of ESO Conference and Workshop Proceedings (European Southern Observatory, Garching, Germany, 1993), pp. 181–186.

Matson, C. L.

Melamed, A.

D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 487–498 (1994).
[CrossRef]

Melamed, R.

R. Melamed, Y. Yitzhaky, N. S. Kopeika, S. R. Rotman, “Experimental comparison of three target acquisition models,” Opt. Eng. 37, 1902–1913 (1998).
[CrossRef]

Merkle, F.

F. Rigaut, G. Rousset, P. Kern, J.-C. Fontanella, J-P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).

G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, L29–L32 (1990).

Michau, V.

Miller, M. G.

M. G. Miller, P. L. Zieske, “Turbulence environment characterization,” (Rome Air Development Center, Rome, N.Y., 1979).

Mugnier, L. M.

Murphy, E. A.

F. P. Battles, E. A. Murphy, J. P. Noonan, “The contribution of atmospheric density to the drop-off rage of Cn2,” Phys. Scr.151–153 (1988).

R. R. Beland, J. H. Brown, R. E. Good, E. A. Murphy, “Optical turbulence characterization of AMOS, 1985,” (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).

R. E. Good, R. R. Beland, E. A. Murphy, J. H. Brown, E. M. Dewan, “Atmospheric models of optical turbulence,” in Modeling of the Atmosphere, L. S. Rothman, ed., Proc. SPIE928, 165–186 (1988).

Noonan, J. P.

F. P. Battles, E. A. Murphy, J. P. Noonan, “The contribution of atmospheric density to the drop-off rage of Cn2,” Phys. Scr.151–153 (1988).

Ochs, G. R.

Rigaut, F.

F. Rigaut, G. Rousset, P. Kern, J.-C. Fontanella, J-P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).

G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, L29–L32 (1990).

Roggemann, M. C.

Rosenfeld, R.

D. Sadot, R. Rosenfeld, G. Shuker, N. S. Kopeika, “High resolution restoration of images distorted by the atmosphere, based upon average atmospheric MTF,” Opt. Eng. 34, 1799–1807 (1995).
[CrossRef]

Rotman, S. R.

R. Melamed, Y. Yitzhaky, N. S. Kopeika, S. R. Rotman, “Experimental comparison of three target acquisition models,” Opt. Eng. 37, 1902–1913 (1998).
[CrossRef]

Rousset, G.

J.-M. Conan, L. M. Mugnier, T. Fusco, V. Michau, G. Rousset, “Myopic deconvolution of adaptive optics images by use of object and point-spread function power spectra,” Appl. Opt. 37, 4614–4622 (1998).
[CrossRef]

F. Rigaut, G. Rousset, P. Kern, J.-C. Fontanella, J-P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).

G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, L29–L32 (1990).

J.-M. Conan, P.-Y. Madec, G. Rousset, “Image formation in adaptive optics partial correction,” in Active and Adaptive Optics, F. Merkle, ed., Vol. 48 of ESO Conference and Workshop Proceedings (European Southern Observatory, Garching, Germany, 1993), pp. 181–186.

Sadot, D.

N. S. Kopeika, I. Dror, D. Sadot, “The causes of atmospheric blur: comment on “Atmospheric scattering effect on spatial resolution of imaging systems,” J. Opt. Soc. Am. A 15, 3097–3106 (1998).
[CrossRef]

N. S. Kopeika, D. Sadot, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function: reply to comment,” J. Opt. Soc. Am. A 12, 1017–1023 (1995).
[CrossRef]

D. Sadot, R. Rosenfeld, G. Shuker, N. S. Kopeika, “High resolution restoration of images distorted by the atmosphere, based upon average atmospheric MTF,” Opt. Eng. 34, 1799–1807 (1995).
[CrossRef]

D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994).
[CrossRef]

D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 487–498 (1994).
[CrossRef]

D. Sadot, G. Kitron, N. Kitron, N. S. Kopeika, “Thermal imaging through the atmosphere: atmospheric MTF theory and verification,” Opt. Eng. 33, 880–887 (1994).
[CrossRef]

D. Sadot, N. S. Kopeika, “Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol MTF,” J. Opt. Soc. Am. A 10, 172–179 (1993).
[CrossRef]

D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
[CrossRef]

Shuker, G.

D. Sadot, R. Rosenfeld, G. Shuker, N. S. Kopeika, “High resolution restoration of images distorted by the atmosphere, based upon average atmospheric MTF,” Opt. Eng. 34, 1799–1807 (1995).
[CrossRef]

Ulrich, P. B.

P. B. Ulrich, “Hufnagel–Valley profiles for specified values of the coherence length and isoplanatic angle,” (W. J. Schafer Associates, New York, 1988).

Valley, G. C.

Van Zandt, T. E.

T. E. Van Zandt, J. L. Green, K. S. Gage, W. L. Clark, “Vertical profiles of refractivity turbulence structure constant: comparison of observations by the Sunset Radar with a new theoretical model,” Radio Sci. 13, 819–828 (1978).
[CrossRef]

J. M. Warnock, T. E. Van Zandt, “A statistical model to estimate the refractivity turbulence structure constant Cn2 in the free atmosphere,” (NOAA Environmental Research Laboratory, Boulder, Colo., 1985).

Vernin, J.

Wang, T.

Warnock, J. M.

J. M. Warnock, T. E. Van Zandt, “A statistical model to estimate the refractivity turbulence structure constant Cn2 in the free atmosphere,” (NOAA Environmental Research Laboratory, Boulder, Colo., 1985).

Welsh, B.

M. C. Roggemann, B. Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla., 1996).

Yitzhaky, Y.

R. Melamed, Y. Yitzhaky, N. S. Kopeika, S. R. Rotman, “Experimental comparison of three target acquisition models,” Opt. Eng. 37, 1902–1913 (1998).
[CrossRef]

Zieske, P. L.

M. G. Miller, P. L. Zieske, “Turbulence environment characterization,” (Rome Air Development Center, Rome, N.Y., 1979).

Appl. Opt. (4)

Astron. Astrophys. (2)

G. Rousset, J.-C. Fontanella, P. Kern, P. Gigan, F. Rigaut, P. Léna, C. Boyer, P. Jagourel, J.-P. Gaffard, F. Merkle, “First diffraction-limited astronomical images with adaptive optics,” Astron. Astrophys. 230, L29–L32 (1990).

F. Rigaut, G. Rousset, P. Kern, J.-C. Fontanella, J-P. Gaffard, F. Merkle, P. Léna, “Adaptive optics on a 3.6-m telescope: results and performance,” Astron. Astrophys. 250, 280–290 (1991).

J. Opt. Soc. Am. A (5)

Opt. Eng. (5)

R. Melamed, Y. Yitzhaky, N. S. Kopeika, S. R. Rotman, “Experimental comparison of three target acquisition models,” Opt. Eng. 37, 1902–1913 (1998).
[CrossRef]

D. Sadot, R. Rosenfeld, G. Shuker, N. S. Kopeika, “High resolution restoration of images distorted by the atmosphere, based upon average atmospheric MTF,” Opt. Eng. 34, 1799–1807 (1995).
[CrossRef]

D. Sadot, N. S. Kopeika, “Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: models and validation,” Opt. Eng. 31, 200–212 (1992).
[CrossRef]

D. Sadot, G. Kitron, N. Kitron, N. S. Kopeika, “Thermal imaging through the atmosphere: atmospheric MTF theory and verification,” Opt. Eng. 33, 880–887 (1994).
[CrossRef]

D. Sadot, A. Dvir, I. Bergel, N. S. Kopeika, “Restoration of thermal images distorted by the atmosphere, based upon measured and theoretical atmospheric modulation transfer function,” Opt. Eng. 33, 44–53 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Scr. (3)

F. P. Battles, E. A. Murphy, J. P. Noonan, “The contribution of atmospheric density to the drop-off rage of Cn2,” Phys. Scr.151–153 (1988).

J. H. Brown, R. R. Beland, “A site comparison of optical turbulence in the lower stratosphere at night using thermosonde data,” Phys. Scr. 37, 424–426 (1988).
[CrossRef]

J. H. Brown, R. R. Beland, “A deterministic temperature for stratospheric optical turbulence,” Phys. Scr. 37, 419–423 (1988).
[CrossRef]

Radio Sci. (1)

T. E. Van Zandt, J. L. Green, K. S. Gage, W. L. Clark, “Vertical profiles of refractivity turbulence structure constant: comparison of observations by the Sunset Radar with a new theoretical model,” Radio Sci. 13, 819–828 (1978).
[CrossRef]

Waves Random Media (1)

D. Sadot, A. Melamed, N. Dinur, N. S. Kopeika, “Effects of aerosol forward scatter on long and short exposure atmospheric coherence diameter,” Waves Random Media 4, 487–498 (1994).
[CrossRef]

Other (11)

J. M. Warnock, T. E. Van Zandt, “A statistical model to estimate the refractivity turbulence structure constant Cn2 in the free atmosphere,” (NOAA Environmental Research Laboratory, Boulder, Colo., 1985).

P. B. Ulrich, “Hufnagel–Valley profiles for specified values of the coherence length and isoplanatic angle,” (W. J. Schafer Associates, New York, 1988).

N. S. Kopeika, A System Engineering Approach to Imaging, Vol. PM38 of SPIE Press Monograph Series (SPIE Press, Bellingham, Wash., 1998).

M. C. Roggemann, B. Welsh, Imaging through Turbulence (CRC Press, Boca Raton, Fla., 1996).

R. R. Beland, “Propagation through atmospheric optical turbulence,” in Atmospheric Propagation of Radiation, F. G. Smith, ed., Vol. 2 of the Infrared and Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1993), Chap. 2.

M. G. Miller, P. L. Zieske, “Turbulence environment characterization,” (Rome Air Development Center, Rome, N.Y., 1979).

R. R. Beland, J. H. Brown, R. E. Good, E. A. Murphy, “Optical turbulence characterization of AMOS, 1985,” (U.S. Air Force Geophysics Laboratory, Hanscom AFB, Mass., 1988).

R. E. Good, R. R. Beland, E. A. Murphy, J. H. Brown, E. M. Dewan, “Atmospheric models of optical turbulence,” in Modeling of the Atmosphere, L. S. Rothman, ed., Proc. SPIE928, 165–186 (1988).

J.-M. Conan, P.-Y. Madec, G. Rousset, “Image formation in adaptive optics partial correction,” in Active and Adaptive Optics, F. Merkle, ed., Vol. 48 of ESO Conference and Workshop Proceedings (European Southern Observatory, Garching, Germany, 1993), pp. 181–186.

J.-M. Conan, “Étude de la correction partielle en optique adaptative,” Ph.D. dissertation (Université de Paris XI, Orsay, France, 1994).

L. E. Herman, “Atmospheric optics,” in Handbook of Geophysics and Space Environments, S. C. Valley, ed. (U.S. Air Force Cambridge Research Laboratory, Bedford, Mass., 1965), Sec. 7.1; see also succeeding handbook editions.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Normalized OTF versus spatial frequency: AO-corrected OTF (solid curve). The aberration-free OTF (dotted curve) and the uncorrected OTF (dashed curve) are shown for comparison. The spatial frequency is normalized to the telescope cutoff. This figure and its caption are reprinted from Ref. 1.

Metrics