Abstract

Sodium resonance-fluorescence lidar is an established technique for measuring atmospheric composition and dynamics in the mesopause region. A large-power–aperture product (6.6-W m2) sodium resonance-fluorescence lidar has been built as a part of the Purple Crow Lidar (PCL) at The University of Western Ontario. This sodium resonance-fluorescence lidar measures, with high optical efficiency, both sodium density and temperature profiles in the 83–100-km region. The sodium lidar operates simultaneously with a powerful Rayleigh- and Raman-scatter lidar (66 W m2). The PCL is thus capable of simultaneous measurement of temperature from the tropopause to the lower thermosphere. The sodium resonance-fluorescence lidar is shown to be able to measure temperature to an absolute precision of 1.5 K and a statistical accuracy of 1 K with a spatial–temporal resolution of 72 (km s) at an altitude of 92 km. We present results from three nights of measurements taken with the sodium lidar and compare these with coincident Rayleigh-scatter lidar measurements. These measurements show significant differences between the temperature profiles derived by the two techniques, which we attribute to variations in the ratio of molecular nitrogen to molecular oxygen that are not accounted for in the standard Rayleigh-scatter temperature analysis.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Y. She, R. J. Alvarez, L. M. Caldwell, D. A. Krueger, “High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992).
    [CrossRef] [PubMed]
  2. C. S. Gardner, D. C. Senft, T. J. Beatty, R. E. Bills, C. A. Hostetler, “Rayleigh and sodium lidar techniques for measuring middle atmosphere density, temperature, and wind perturbations and their spectra,” in World Ionosphere/Thermosphere Study Handbook, Scientific Committee on Solar Terrestrial Physics, eds. (International Council of Scientific Unions, Urbana, Ill., 1989), Vol. 2, pp. 148–187.
  3. R. J. Sica, S. Sargoytchev, P. S. Argall, E. F. Borra, L. Girard, C. T. Sparrow, S. Flatt, “Lidar measurements taken through the use of a large-aperture liquid mirror. 1. Rayleigh-scatter system,” Appl. Opt. 34, 6925–6936 (1995).
    [CrossRef] [PubMed]
  4. R. J. Sica, M. D. Thorsley, “Measurements of superadiabatic lapse rates in the middle atmosphere,” Geophys. Res. Lett. 23, 2797–2800 (1996).
    [CrossRef]
  5. R. J. Sica, A. T. Russell, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. I. Vertical wavenumber and temporal spectra,” J. Atmos. Sci. 56, 1308–1329 (1999).
    [CrossRef]
  6. R. J. Sica, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. II. Energy dissipation and eddy diffusion,” J. Atmos. Sci. 56, 1330–1343 (1999).
    [CrossRef]
  7. M. M. Mwangi, R. J. Sica, P. S. Argall, “Retrieval of molecular nitrogen and molecular oxygen densities in the upper mesosphere and lower thermosphere using ground-based lidar measurements,” J. Geophys. Res. (to be published).
  8. A. Gibson, L. Thomas, S. Bhattachacharyya, “Laser observation of ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature (London) 281, 131–132 (1979).
    [CrossRef]
  9. K. H. Fricke, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
    [CrossRef]
  10. C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
    [CrossRef]
  11. C. Y. She, J. R. Yu, H. Latifi, R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” App. Opt. 31, 2095–2106 (1992).
    [CrossRef]
  12. M. A. White, D. Golias, D. A. Krueger, C. Y. She, “A frequency-agile lidar for simultaneous measurement of temperature and radial wind in the mesopause region without sodium density contamination,” in Application to Lidar to Current Atmospheric Topics, A. Sedlacek, ed., Proc. SPIE2833, 136–142 (1996).
    [CrossRef]
  13. C. S. Gardner, D. G. Voelz, C. F. Schrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over urbana, Illinois. 1. Seasonal and nocturnal variations.” J. Geophys. Res. 91, 13,659–13,673 (1986).
    [CrossRef]
  14. R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
    [CrossRef]
  15. G. C. Papen, W. M. Pfenninger, D. M. Simonich, “Sensitivity analysis of Na narrowband wind-temperature systems,” Appl. Opt. 34, 480–498 (1995).
    [CrossRef] [PubMed]
  16. R. W. Hamming, Design of Nonrecursive Filters (Prentice-Hall, Englewood Cliffs, N.J., 1977), Chap. 6.
  17. S. Fleming, S. Chandra, M. Schoeberl, J. Barnett, “Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km,” (National Aeronautics and Space Administration, Washington, D.C., 1988).
  18. J. R. Yu, C. Y. She, “Climatology of a midlatitude mesopause region observed by a lidar at Fort Collins, Colorado (40.6N, 105W),” J. Geophy. Res. 100, 6925–6936 (1995).
    [CrossRef]

1999 (2)

R. J. Sica, A. T. Russell, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. I. Vertical wavenumber and temporal spectra,” J. Atmos. Sci. 56, 1308–1329 (1999).
[CrossRef]

R. J. Sica, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. II. Energy dissipation and eddy diffusion,” J. Atmos. Sci. 56, 1330–1343 (1999).
[CrossRef]

1996 (1)

R. J. Sica, M. D. Thorsley, “Measurements of superadiabatic lapse rates in the middle atmosphere,” Geophys. Res. Lett. 23, 2797–2800 (1996).
[CrossRef]

1995 (3)

1992 (2)

C. Y. She, R. J. Alvarez, L. M. Caldwell, D. A. Krueger, “High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992).
[CrossRef] [PubMed]

C. Y. She, J. R. Yu, H. Latifi, R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” App. Opt. 31, 2095–2106 (1992).
[CrossRef]

1991 (1)

R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

1990 (1)

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

1986 (1)

C. S. Gardner, D. G. Voelz, C. F. Schrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over urbana, Illinois. 1. Seasonal and nocturnal variations.” J. Geophys. Res. 91, 13,659–13,673 (1986).
[CrossRef]

1985 (1)

K. H. Fricke, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

1979 (1)

A. Gibson, L. Thomas, S. Bhattachacharyya, “Laser observation of ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature (London) 281, 131–132 (1979).
[CrossRef]

Alvarez, R. J.

C. Y. She, R. J. Alvarez, L. M. Caldwell, D. A. Krueger, “High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992).
[CrossRef] [PubMed]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

Argall, P. S.

R. J. Sica, S. Sargoytchev, P. S. Argall, E. F. Borra, L. Girard, C. T. Sparrow, S. Flatt, “Lidar measurements taken through the use of a large-aperture liquid mirror. 1. Rayleigh-scatter system,” Appl. Opt. 34, 6925–6936 (1995).
[CrossRef] [PubMed]

M. M. Mwangi, R. J. Sica, P. S. Argall, “Retrieval of molecular nitrogen and molecular oxygen densities in the upper mesosphere and lower thermosphere using ground-based lidar measurements,” J. Geophys. Res. (to be published).

Barnett, J.

S. Fleming, S. Chandra, M. Schoeberl, J. Barnett, “Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km,” (National Aeronautics and Space Administration, Washington, D.C., 1988).

Beatty, T. J.

C. S. Gardner, D. C. Senft, T. J. Beatty, R. E. Bills, C. A. Hostetler, “Rayleigh and sodium lidar techniques for measuring middle atmosphere density, temperature, and wind perturbations and their spectra,” in World Ionosphere/Thermosphere Study Handbook, Scientific Committee on Solar Terrestrial Physics, eds. (International Council of Scientific Unions, Urbana, Ill., 1989), Vol. 2, pp. 148–187.

Bhattachacharyya, S.

A. Gibson, L. Thomas, S. Bhattachacharyya, “Laser observation of ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature (London) 281, 131–132 (1979).
[CrossRef]

Bills, R. E.

C. Y. She, J. R. Yu, H. Latifi, R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” App. Opt. 31, 2095–2106 (1992).
[CrossRef]

R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

C. S. Gardner, D. C. Senft, T. J. Beatty, R. E. Bills, C. A. Hostetler, “Rayleigh and sodium lidar techniques for measuring middle atmosphere density, temperature, and wind perturbations and their spectra,” in World Ionosphere/Thermosphere Study Handbook, Scientific Committee on Solar Terrestrial Physics, eds. (International Council of Scientific Unions, Urbana, Ill., 1989), Vol. 2, pp. 148–187.

Borra, E. F.

Caldwell, L. M.

Chandra, S.

S. Fleming, S. Chandra, M. Schoeberl, J. Barnett, “Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km,” (National Aeronautics and Space Administration, Washington, D.C., 1988).

Flatt, S.

Fleming, S.

S. Fleming, S. Chandra, M. Schoeberl, J. Barnett, “Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km,” (National Aeronautics and Space Administration, Washington, D.C., 1988).

Fricke, K. H.

K. H. Fricke, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Gardner, C. S.

R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

C. S. Gardner, D. G. Voelz, C. F. Schrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over urbana, Illinois. 1. Seasonal and nocturnal variations.” J. Geophys. Res. 91, 13,659–13,673 (1986).
[CrossRef]

C. S. Gardner, D. C. Senft, T. J. Beatty, R. E. Bills, C. A. Hostetler, “Rayleigh and sodium lidar techniques for measuring middle atmosphere density, temperature, and wind perturbations and their spectra,” in World Ionosphere/Thermosphere Study Handbook, Scientific Committee on Solar Terrestrial Physics, eds. (International Council of Scientific Unions, Urbana, Ill., 1989), Vol. 2, pp. 148–187.

Gibson, A.

A. Gibson, L. Thomas, S. Bhattachacharyya, “Laser observation of ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature (London) 281, 131–132 (1979).
[CrossRef]

Girard, L.

Golias, D.

M. A. White, D. Golias, D. A. Krueger, C. Y. She, “A frequency-agile lidar for simultaneous measurement of temperature and radial wind in the mesopause region without sodium density contamination,” in Application to Lidar to Current Atmospheric Topics, A. Sedlacek, ed., Proc. SPIE2833, 136–142 (1996).
[CrossRef]

Hamming, R. W.

R. W. Hamming, Design of Nonrecursive Filters (Prentice-Hall, Englewood Cliffs, N.J., 1977), Chap. 6.

Hostetler, C. A.

C. S. Gardner, D. C. Senft, T. J. Beatty, R. E. Bills, C. A. Hostetler, “Rayleigh and sodium lidar techniques for measuring middle atmosphere density, temperature, and wind perturbations and their spectra,” in World Ionosphere/Thermosphere Study Handbook, Scientific Committee on Solar Terrestrial Physics, eds. (International Council of Scientific Unions, Urbana, Ill., 1989), Vol. 2, pp. 148–187.

Krueger, D. A.

C. Y. She, R. J. Alvarez, L. M. Caldwell, D. A. Krueger, “High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992).
[CrossRef] [PubMed]

M. A. White, D. Golias, D. A. Krueger, C. Y. She, “A frequency-agile lidar for simultaneous measurement of temperature and radial wind in the mesopause region without sodium density contamination,” in Application to Lidar to Current Atmospheric Topics, A. Sedlacek, ed., Proc. SPIE2833, 136–142 (1996).
[CrossRef]

Latifi, H.

C. Y. She, J. R. Yu, H. Latifi, R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” App. Opt. 31, 2095–2106 (1992).
[CrossRef]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

Mwangi, M. M.

M. M. Mwangi, R. J. Sica, P. S. Argall, “Retrieval of molecular nitrogen and molecular oxygen densities in the upper mesosphere and lower thermosphere using ground-based lidar measurements,” J. Geophys. Res. (to be published).

Papen, G. C.

Pfenninger, W. M.

Russell, A. T.

R. J. Sica, A. T. Russell, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. I. Vertical wavenumber and temporal spectra,” J. Atmos. Sci. 56, 1308–1329 (1999).
[CrossRef]

Sargoytchev, S.

Schoeberl, M.

S. Fleming, S. Chandra, M. Schoeberl, J. Barnett, “Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km,” (National Aeronautics and Space Administration, Washington, D.C., 1988).

Schrist, C. F.

C. S. Gardner, D. G. Voelz, C. F. Schrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over urbana, Illinois. 1. Seasonal and nocturnal variations.” J. Geophys. Res. 91, 13,659–13,673 (1986).
[CrossRef]

Segal, A. C.

C. S. Gardner, D. G. Voelz, C. F. Schrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over urbana, Illinois. 1. Seasonal and nocturnal variations.” J. Geophys. Res. 91, 13,659–13,673 (1986).
[CrossRef]

Senft, D. C.

C. S. Gardner, D. C. Senft, T. J. Beatty, R. E. Bills, C. A. Hostetler, “Rayleigh and sodium lidar techniques for measuring middle atmosphere density, temperature, and wind perturbations and their spectra,” in World Ionosphere/Thermosphere Study Handbook, Scientific Committee on Solar Terrestrial Physics, eds. (International Council of Scientific Unions, Urbana, Ill., 1989), Vol. 2, pp. 148–187.

She, C. Y.

J. R. Yu, C. Y. She, “Climatology of a midlatitude mesopause region observed by a lidar at Fort Collins, Colorado (40.6N, 105W),” J. Geophy. Res. 100, 6925–6936 (1995).
[CrossRef]

C. Y. She, R. J. Alvarez, L. M. Caldwell, D. A. Krueger, “High-spectral-resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541–543 (1992).
[CrossRef] [PubMed]

C. Y. She, J. R. Yu, H. Latifi, R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” App. Opt. 31, 2095–2106 (1992).
[CrossRef]

R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

M. A. White, D. Golias, D. A. Krueger, C. Y. She, “A frequency-agile lidar for simultaneous measurement of temperature and radial wind in the mesopause region without sodium density contamination,” in Application to Lidar to Current Atmospheric Topics, A. Sedlacek, ed., Proc. SPIE2833, 136–142 (1996).
[CrossRef]

Sica, R. J.

R. J. Sica, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. II. Energy dissipation and eddy diffusion,” J. Atmos. Sci. 56, 1330–1343 (1999).
[CrossRef]

R. J. Sica, A. T. Russell, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. I. Vertical wavenumber and temporal spectra,” J. Atmos. Sci. 56, 1308–1329 (1999).
[CrossRef]

R. J. Sica, M. D. Thorsley, “Measurements of superadiabatic lapse rates in the middle atmosphere,” Geophys. Res. Lett. 23, 2797–2800 (1996).
[CrossRef]

R. J. Sica, S. Sargoytchev, P. S. Argall, E. F. Borra, L. Girard, C. T. Sparrow, S. Flatt, “Lidar measurements taken through the use of a large-aperture liquid mirror. 1. Rayleigh-scatter system,” Appl. Opt. 34, 6925–6936 (1995).
[CrossRef] [PubMed]

M. M. Mwangi, R. J. Sica, P. S. Argall, “Retrieval of molecular nitrogen and molecular oxygen densities in the upper mesosphere and lower thermosphere using ground-based lidar measurements,” J. Geophys. Res. (to be published).

Simonich, D. M.

Sparrow, C. T.

Thomas, L.

A. Gibson, L. Thomas, S. Bhattachacharyya, “Laser observation of ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature (London) 281, 131–132 (1979).
[CrossRef]

Thorsley, M. D.

R. J. Sica, M. D. Thorsley, “Measurements of superadiabatic lapse rates in the middle atmosphere,” Geophys. Res. Lett. 23, 2797–2800 (1996).
[CrossRef]

Voelz, D. G.

C. S. Gardner, D. G. Voelz, C. F. Schrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over urbana, Illinois. 1. Seasonal and nocturnal variations.” J. Geophys. Res. 91, 13,659–13,673 (1986).
[CrossRef]

von Zahn, U.

K. H. Fricke, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

White, M. A.

M. A. White, D. Golias, D. A. Krueger, C. Y. She, “A frequency-agile lidar for simultaneous measurement of temperature and radial wind in the mesopause region without sodium density contamination,” in Application to Lidar to Current Atmospheric Topics, A. Sedlacek, ed., Proc. SPIE2833, 136–142 (1996).
[CrossRef]

Yu, J. R.

J. R. Yu, C. Y. She, “Climatology of a midlatitude mesopause region observed by a lidar at Fort Collins, Colorado (40.6N, 105W),” J. Geophy. Res. 100, 6925–6936 (1995).
[CrossRef]

C. Y. She, J. R. Yu, H. Latifi, R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” App. Opt. 31, 2095–2106 (1992).
[CrossRef]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

App. Opt. (1)

C. Y. She, J. R. Yu, H. Latifi, R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” App. Opt. 31, 2095–2106 (1992).
[CrossRef]

Appl. Opt. (2)

Geophys. Res. Lett. (2)

R. J. Sica, M. D. Thorsley, “Measurements of superadiabatic lapse rates in the middle atmosphere,” Geophys. Res. Lett. 23, 2797–2800 (1996).
[CrossRef]

C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez, R. E. Bills, C. S. Gardner, “Two-frequency lidar technique for mesospheric Na temperature measurements,” Geophys. Res. Lett. 17, 929–932 (1990).
[CrossRef]

J. Atmos. Sci. (2)

R. J. Sica, A. T. Russell, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. I. Vertical wavenumber and temporal spectra,” J. Atmos. Sci. 56, 1308–1329 (1999).
[CrossRef]

R. J. Sica, “Measurements of the effects of gravity waves in the middle atmosphere using parametric models of density fluctuations. II. Energy dissipation and eddy diffusion,” J. Atmos. Sci. 56, 1330–1343 (1999).
[CrossRef]

J. Atmos. Terr. Phys. (1)

K. H. Fricke, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

J. Geophy. Res. (1)

J. R. Yu, C. Y. She, “Climatology of a midlatitude mesopause region observed by a lidar at Fort Collins, Colorado (40.6N, 105W),” J. Geophy. Res. 100, 6925–6936 (1995).
[CrossRef]

J. Geophys. Res. (1)

C. S. Gardner, D. G. Voelz, C. F. Schrist, A. C. Segal, “Lidar studies of the nighttime sodium layer over urbana, Illinois. 1. Seasonal and nocturnal variations.” J. Geophys. Res. 91, 13,659–13,673 (1986).
[CrossRef]

Nature (London) (1)

A. Gibson, L. Thomas, S. Bhattachacharyya, “Laser observation of ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere,” Nature (London) 281, 131–132 (1979).
[CrossRef]

Opt. Eng. (1)

R. E. Bills, C. S. Gardner, C. Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

Opt. Lett. (1)

Other (5)

C. S. Gardner, D. C. Senft, T. J. Beatty, R. E. Bills, C. A. Hostetler, “Rayleigh and sodium lidar techniques for measuring middle atmosphere density, temperature, and wind perturbations and their spectra,” in World Ionosphere/Thermosphere Study Handbook, Scientific Committee on Solar Terrestrial Physics, eds. (International Council of Scientific Unions, Urbana, Ill., 1989), Vol. 2, pp. 148–187.

R. W. Hamming, Design of Nonrecursive Filters (Prentice-Hall, Englewood Cliffs, N.J., 1977), Chap. 6.

S. Fleming, S. Chandra, M. Schoeberl, J. Barnett, “Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km,” (National Aeronautics and Space Administration, Washington, D.C., 1988).

M. A. White, D. Golias, D. A. Krueger, C. Y. She, “A frequency-agile lidar for simultaneous measurement of temperature and radial wind in the mesopause region without sodium density contamination,” in Application to Lidar to Current Atmospheric Topics, A. Sedlacek, ed., Proc. SPIE2833, 136–142 (1996).
[CrossRef]

M. M. Mwangi, R. J. Sica, P. S. Argall, “Retrieval of molecular nitrogen and molecular oxygen densities in the upper mesosphere and lower thermosphere using ground-based lidar measurements,” J. Geophys. Res. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the PCL sodium lidar transmitter system: prf, pulse-repetition frequency.

Fig. 2
Fig. 2

Comparison of measured and modeled Doppler-free saturation spectra. (a) Measured spectrum offset vertically by +0.2 for clarity. (b) High-resolution spectrum of the f a feature with no vertical offset. Modeled spectra are shown as solid curves; the individual measurements are shown as crosses. (c) Same as (b), except for the f c feature.

Fig. 3
Fig. 3

Sodium number density measurements made with the PCL on 27 April 1998 from 0320 to 0648 UT. The measurements have a time resolution of 1 min and a range resolution of 24 m and are smoothed by 3’s and 5’s in both time and altitude.

Fig. 4
Fig. 4

Average statistical uncertainties for the sodium densities shown in Fig. 3. Variations from this average are generally less than 20%.

Fig. 5
Fig. 5

Temperature measurements made with the PCL sodium lidar on 27 April 1998 from 0320 to 0624 UT. The temporal resolution of the measurements is 8 min, and the spatial resolution is 250 m. The measurements are smoothed with 3’s and 5’s in both time and altitude.

Fig. 6
Fig. 6

Statistical uncertainties associated with the temperatures in Fig. 5. Each of the 24 curves represents the statistical uncertainty of an individual temperature profile used in the construction of Fig. 5.

Fig. 7
Fig. 7

Average temperature measured by the PCL sodium and Rayleigh lidar systems on 27 April 1998 during the period 0245 to 0652 UT. Also shown is the Fleming model. The error bars show 1σ statistical uncertainties.

Fig. 8
Fig. 8

Average temperature measured by the PCL sodium and Rayleigh lidar systems on 21 May 1998 during the period 0413 to 0844 UT. Also shown is the Fleming model. The error bars show 1σ statistical uncertainties.

Fig. 9
Fig. 9

Average temperature measured by the PCL sodium and Rayleigh lidar systems on 24 May 1998 during the period 0231 to 0835 UT. Also shown is the Fleming model. The error bars show 1σ statistical uncertainties.

Tables (3)

Tables Icon

Table 1 Specifications of the Detector System of the Purple Crow Sodium and Rayleigh Lidars

Tables Icon

Table 2 Summary of Laser Locking Accuracy during the 4-h 31-min Observation Period on 21 May 1998

Tables Icon

Table 3 Summary of Instrumental and Geophysical Error Sources in PCL Na Temperatures

Metrics