Abstract

An important issue in developing applications for photopolymers in holography is the effect of film thickness on recording properties. Now it is possible to create these samples with a much wider range of thickness (d = 20–1400 µm) than was previously available. We exploit these recent advances in photopolymer processing to systematically evaluate how the dynamic range of a photopolymer depends on its thickness. The results illustrate that sample performance increases linearly with thickness as predicted by standard models of volume holography. However, above a critical thickness sample performance degrades, and the angular response of recorded plane-wave holograms shows evidence of grating curvature. These distortions are likely the result of photopolymer shrinkage, which in thicker samples occurs in a nonuniform fashion. This problem limits the performance of these photopolymers and is likely to be an issue for any photopolymer that undergoes comparable polymerization shrinkage.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Chao, S. Chi, “Diffraction properties of windshield laminated photopolymer holograms,” J. Opt. 29, 95–103 (1998).
    [CrossRef]
  2. A. Pu, D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
    [CrossRef] [PubMed]
  3. U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
    [CrossRef]
  4. W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
  5. I. Semenova, N. Reinhand, “Holographic spectral selectors,” in Holographic Materials IV, T. J. Trout, ed., Proc. SPIE3294, 207–214 (1998).
    [CrossRef]
  6. C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
    [CrossRef]
  7. J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J.-M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
    [CrossRef]
  8. T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
    [CrossRef]
  9. H.-Y. S. Li, D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
    [CrossRef] [PubMed]
  10. J. T. Gallo, C. M. Verber, “Model for the effects of material shrinkage on volume holograms,” Appl. Opt. 33, 6797–6804 (1994).
    [CrossRef] [PubMed]
  11. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photoplymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
    [CrossRef]
  12. M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–254 (1999).
    [CrossRef]
  13. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998).
    [CrossRef]
  14. V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
    [CrossRef]
  15. C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
    [CrossRef]
  16. D. A. Waldman, H.-Y. S. Li, E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” in Diffractive and Holographic Device Technologies and Applications V, I. Cindrich, S. H. Lee, eds., Proc. SPIE3291, 89–103 (1998).
    [CrossRef]
  17. D. A. Waldman, H.-Y. S. Li, “Determination of low transverse shrinkage in slant fringe gratings of a cationic ring-opening volume hologram recording material,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 354–372 (1997).
    [CrossRef]
  18. D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).
  19. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
    [CrossRef]
  20. G. J. Steckman, I. Solomatine, G. Zhou, D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310–1312 (1998).
    [CrossRef]
  21. L. Dhar, A. Hale, H. E. Katz, M. A. Schilling, M. G. Schnoes, F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999).
    [CrossRef]
  22. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  23. R. R. A. Syms, Practical Volume Holography (Oxford University Press, New York, 1990).
  24. D. Liu, W. Tang, W. Huang, Z. Liang, “Relationship between the diffraction efficiency of a reflection hologram and the thickness and absorption of the recording medium,” Opt. Eng. 31, 809–812 (1992).
    [CrossRef]
  25. R. A. Lessard, F. Ghailane, G. Manivannan, “Holographic characterizaion of photochromics-doped-polymers films for holographic memories,” T. Trout, ed., Proc. SPIE2688, 45–51 (1996).
  26. S. S. Xue, G. Manivannan, R. A. Lessard, “Holographic and spectroscopic characterization of spiropyran doped poly(methyl methacrylate) films,” Thin Solid Films 253, 228–232 (1994).
    [CrossRef]
  27. F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
    [CrossRef] [PubMed]
  28. X. Zhao, X. Mourolis, “Mechanism of grating formation in DuPont photopolymers,” J. Mod. Opt. 41, 1929–1934 (1996).
    [CrossRef]
  29. A. Pu, K. Curtis, D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
    [CrossRef]
  30. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
    [CrossRef]
  31. K. Curtis, D. Psaltis, “Recording of multiple holograms in photopolymer films,” Appl. Opt. 31, 7425–7428 (1992).
    [CrossRef] [PubMed]
  32. J. J. A. Couture, R. A. Lessard, “Diffraction efficiency changes induced by coupling effects between gratings of transmission holograms,” Optik 68, 69–80 (1984).
  33. J. J. A. Couture, R. A. Lessard, “Effective thickness determination for volume transmissioni multiplex holograms,” Can. J. Phys. 64, 553–557 (1986).
    [CrossRef]
  34. U.-S. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
    [CrossRef] [PubMed]
  35. D. Kermisch, “Nonuniform sinusoidally modulated dielectric gratings,” J. Opt. Soc. Am. 59, 1409–1414 (1969).
    [CrossRef]
  36. L. B. Au, J. C. W. Newell, L. Solymar, “Nonuniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).
    [CrossRef]
  37. T. Kubota, “The bending of interference fringes inside a hologram,” Opt. Acta 26, 731–743 (1979).
    [CrossRef]
  38. V. Weiss, A. A. Friesem, E. Millul, “Control of grating anomolies in photoactive polymers,” in Photopolymer Device Physics, Chemistry, and Applications III, R. A. Lessard, ed., Proc. SPIE2851, 110–117 (1996).
  39. V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Imaging Sci. Technol. 41, 371–382 (1997).
  40. D. Liu, G. Manivannan, H. H. Arsenault, R. A. Lessard, “Asymmetry in the diffraction spectrum of a reflection hologram grating,” J. Mod. Opt. 42, 639–653 (1995).
    [CrossRef]
  41. E. Suhir, “Analytical modeling of the interfacial shearing stress in dual-coated optical fiber specimens subjected to tension,” Appl. Opt. 32, 3024–3034 (1993).
    [CrossRef] [PubMed]
  42. E. Suhir, “Effect of the nonlinear stress-strain relationship on the maximum stress in silica fibers subjected to two-point bending,” Appl. Opt. 32, 1567–1572 (1993).
    [CrossRef] [PubMed]

1999 (2)

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–254 (1999).
[CrossRef]

L. Dhar, A. Hale, H. E. Katz, M. A. Schilling, M. G. Schnoes, F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999).
[CrossRef]

1998 (6)

L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998).
[CrossRef]

G. J. Steckman, I. Solomatine, G. Zhou, D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310–1312 (1998).
[CrossRef]

C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

W. Chao, S. Chi, “Diffraction properties of windshield laminated photopolymer holograms,” J. Opt. 29, 95–103 (1998).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photoplymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

1997 (5)

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J.-M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Imaging Sci. Technol. 41, 371–382 (1997).

1996 (4)

F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
[CrossRef] [PubMed]

A. Pu, D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
[CrossRef] [PubMed]

X. Zhao, X. Mourolis, “Mechanism of grating formation in DuPont photopolymers,” J. Mod. Opt. 41, 1929–1934 (1996).
[CrossRef]

A. Pu, K. Curtis, D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[CrossRef]

1995 (2)

U.-S. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

D. Liu, G. Manivannan, H. H. Arsenault, R. A. Lessard, “Asymmetry in the diffraction spectrum of a reflection hologram grating,” J. Mod. Opt. 42, 639–653 (1995).
[CrossRef]

1994 (3)

H.-Y. S. Li, D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
[CrossRef] [PubMed]

J. T. Gallo, C. M. Verber, “Model for the effects of material shrinkage on volume holograms,” Appl. Opt. 33, 6797–6804 (1994).
[CrossRef] [PubMed]

S. S. Xue, G. Manivannan, R. A. Lessard, “Holographic and spectroscopic characterization of spiropyran doped poly(methyl methacrylate) films,” Thin Solid Films 253, 228–232 (1994).
[CrossRef]

1993 (3)

1992 (2)

K. Curtis, D. Psaltis, “Recording of multiple holograms in photopolymer films,” Appl. Opt. 31, 7425–7428 (1992).
[CrossRef] [PubMed]

D. Liu, W. Tang, W. Huang, Z. Liang, “Relationship between the diffraction efficiency of a reflection hologram and the thickness and absorption of the recording medium,” Opt. Eng. 31, 809–812 (1992).
[CrossRef]

1988 (1)

1987 (1)

L. B. Au, J. C. W. Newell, L. Solymar, “Nonuniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).
[CrossRef]

1986 (1)

J. J. A. Couture, R. A. Lessard, “Effective thickness determination for volume transmissioni multiplex holograms,” Can. J. Phys. 64, 553–557 (1986).
[CrossRef]

1984 (1)

J. J. A. Couture, R. A. Lessard, “Diffraction efficiency changes induced by coupling effects between gratings of transmission holograms,” Optik 68, 69–80 (1984).

1979 (1)

T. Kubota, “The bending of interference fringes inside a hologram,” Opt. Acta 26, 731–743 (1979).
[CrossRef]

1969 (2)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

D. Kermisch, “Nonuniform sinusoidally modulated dielectric gratings,” J. Opt. Soc. Am. 59, 1409–1414 (1969).
[CrossRef]

Arsenault, H. H.

D. Liu, G. Manivannan, H. H. Arsenault, R. A. Lessard, “Asymmetry in the diffraction spectrum of a reflection hologram grating,” J. Mod. Opt. 42, 639–653 (1995).
[CrossRef]

Au, L. B.

L. B. Au, J. C. W. Newell, L. Solymar, “Nonuniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).
[CrossRef]

Bair, H.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photoplymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Blyler, L. L.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–254 (1999).
[CrossRef]

Boyd, C.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–254 (1999).
[CrossRef]

L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photoplymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Brady, D.

Burr, G. W.

Campbell, S.

Caulfield, H. J.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J.-M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

U.-S. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Cetin, E. A.

D. A. Waldman, H.-Y. S. Li, E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” in Diffractive and Holographic Device Technologies and Applications V, I. Cindrich, S. H. Lee, eds., Proc. SPIE3291, 89–103 (1998).
[CrossRef]

Chao, W.

W. Chao, S. Chi, “Diffraction properties of windshield laminated photopolymer holograms,” J. Opt. 29, 95–103 (1998).
[CrossRef]

Chen, R. T.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Chi, S.

W. Chao, S. Chi, “Diffraction properties of windshield laminated photopolymer holograms,” J. Opt. 29, 95–103 (1998).
[CrossRef]

Colvin, V. L.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–254 (1999).
[CrossRef]

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Couture, J. J. A.

J. J. A. Couture, R. A. Lessard, “Effective thickness determination for volume transmissioni multiplex holograms,” Can. J. Phys. 64, 553–557 (1986).
[CrossRef]

J. J. A. Couture, R. A. Lessard, “Diffraction efficiency changes induced by coupling effects between gratings of transmission holograms,” Optik 68, 69–80 (1984).

Curtis, K.

Dhal, P. K.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Dhar, L.

L. Dhar, A. Hale, H. E. Katz, M. A. Schilling, M. G. Schnoes, F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999).
[CrossRef]

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–254 (1999).
[CrossRef]

L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photoplymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Duzick, T.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).

Fournier, J.-M.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J.-M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Friesem, A. A.

V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Imaging Sci. Technol. 41, 371–382 (1997).

V. Weiss, A. A. Friesem, E. Millul, “Control of grating anomolies in photoactive polymers,” in Photopolymer Device Physics, Chemistry, and Applications III, R. A. Lessard, ed., Proc. SPIE2851, 110–117 (1996).

Fu, Z.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Gallo, J. T.

Gambogi, W.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).

Gambogi, W. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Ghailane, F.

R. A. Lessard, F. Ghailane, G. Manivannan, “Holographic characterizaion of photochromics-doped-polymers films for holographic memories,” T. Trout, ed., Proc. SPIE2688, 45–51 (1996).

Hale, A.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–254 (1999).
[CrossRef]

L. Dhar, A. Hale, H. E. Katz, M. A. Schilling, M. G. Schnoes, F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999).
[CrossRef]

Hamzavy, B.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).

Harris, A.

Harris, A. L.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–254 (1999).
[CrossRef]

C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Harris, T. D.

C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

Hemmer, P.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J.-M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Hill, A.

Horner, M. G.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Huang, W.

D. Liu, W. Tang, W. Huang, Z. Liang, “Relationship between the diffraction efficiency of a reflection hologram and the thickness and absorption of the recording medium,” Opt. Eng. 31, 809–812 (1992).
[CrossRef]

Ingwall, R. T.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Kagan, C. R.

C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

Katz, H. E.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–254 (1999).
[CrossRef]

L. Dhar, A. Hale, H. E. Katz, M. A. Schilling, M. G. Schnoes, F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999).
[CrossRef]

Kelly, J.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).

Kermisch, D.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kolb, E. S.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Korzinin, Y. L.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J.-M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Krongauz, V. A.

V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Imaging Sci. Technol. 41, 371–382 (1997).

Kubota, T.

T. Kubota, “The bending of interference fringes inside a hologram,” Opt. Acta 26, 731–743 (1979).
[CrossRef]

Larson, R. G.

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Lessard, R. A.

D. Liu, G. Manivannan, H. H. Arsenault, R. A. Lessard, “Asymmetry in the diffraction spectrum of a reflection hologram grating,” J. Mod. Opt. 42, 639–653 (1995).
[CrossRef]

S. S. Xue, G. Manivannan, R. A. Lessard, “Holographic and spectroscopic characterization of spiropyran doped poly(methyl methacrylate) films,” Thin Solid Films 253, 228–232 (1994).
[CrossRef]

J. J. A. Couture, R. A. Lessard, “Effective thickness determination for volume transmissioni multiplex holograms,” Can. J. Phys. 64, 553–557 (1986).
[CrossRef]

J. J. A. Couture, R. A. Lessard, “Diffraction efficiency changes induced by coupling effects between gratings of transmission holograms,” Optik 68, 69–80 (1984).

R. A. Lessard, F. Ghailane, G. Manivannan, “Holographic characterizaion of photochromics-doped-polymers films for holographic memories,” T. Trout, ed., Proc. SPIE2688, 45–51 (1996).

Levinos, N.

Li, H.-Y. S.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

H.-Y. S. Li, D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
[CrossRef] [PubMed]

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

D. A. Waldman, H.-Y. S. Li, E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” in Diffractive and Holographic Device Technologies and Applications V, I. Cindrich, S. H. Lee, eds., Proc. SPIE3291, 89–103 (1998).
[CrossRef]

D. A. Waldman, H.-Y. S. Li, “Determination of low transverse shrinkage in slant fringe gratings of a cationic ring-opening volume hologram recording material,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 354–372 (1997).
[CrossRef]

Liang, Z.

D. Liu, W. Tang, W. Huang, Z. Liang, “Relationship between the diffraction efficiency of a reflection hologram and the thickness and absorption of the recording medium,” Opt. Eng. 31, 809–812 (1992).
[CrossRef]

Liu, D.

D. Liu, G. Manivannan, H. H. Arsenault, R. A. Lessard, “Asymmetry in the diffraction spectrum of a reflection hologram grating,” J. Mod. Opt. 42, 639–653 (1995).
[CrossRef]

D. Liu, W. Tang, W. Huang, Z. Liang, “Relationship between the diffraction efficiency of a reflection hologram and the thickness and absorption of the recording medium,” Opt. Eng. 31, 809–812 (1992).
[CrossRef]

Liu, J.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Ludman, J. E.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J.-M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Mackara, S.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).

Manivannan, G.

D. Liu, G. Manivannan, H. H. Arsenault, R. A. Lessard, “Asymmetry in the diffraction spectrum of a reflection hologram grating,” J. Mod. Opt. 42, 639–653 (1995).
[CrossRef]

S. S. Xue, G. Manivannan, R. A. Lessard, “Holographic and spectroscopic characterization of spiropyran doped poly(methyl methacrylate) films,” Thin Solid Films 253, 228–232 (1994).
[CrossRef]

R. A. Lessard, F. Ghailane, G. Manivannan, “Holographic characterizaion of photochromics-doped-polymers films for holographic memories,” T. Trout, ed., Proc. SPIE2688, 45–51 (1996).

Millul, E.

V. Weiss, A. A. Friesem, E. Millul, “Control of grating anomolies in photoactive polymers,” in Photopolymer Device Physics, Chemistry, and Applications III, R. A. Lessard, ed., Proc. SPIE2851, 110–117 (1996).

Minns, R. A.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Mirsalehi, M. M.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Mok, F. H.

Mourolis, X.

X. Zhao, X. Mourolis, “Mechanism of grating formation in DuPont photopolymers,” J. Mod. Opt. 41, 1929–1934 (1996).
[CrossRef]

Newell, J. C. W.

L. B. Au, J. C. W. Newell, L. Solymar, “Nonuniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).
[CrossRef]

Psaltis, D.

Pu, A.

A. Pu, K. Curtis, D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[CrossRef]

A. Pu, D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
[CrossRef] [PubMed]

Reinhand, N.

I. Semenova, N. Reinhand, “Holographic spectral selectors,” in Holographic Materials IV, T. J. Trout, ed., Proc. SPIE3294, 207–214 (1998).
[CrossRef]

Reinhand, N. O.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J.-M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Rhee, U.-S.

U.-S. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Riccobono, J. R.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J.-M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Schild, H. G.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Schilling, F. C.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–254 (1999).
[CrossRef]

L. Dhar, A. Hale, H. E. Katz, M. A. Schilling, M. G. Schnoes, F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999).
[CrossRef]

Schilling, M.

L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photoplymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Schilling, M. A.

Schilling, M. L.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–254 (1999).
[CrossRef]

C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Schmieg, J. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Schnoes, M. G.

L. Dhar, A. Hale, H. E. Katz, M. A. Schilling, M. G. Schnoes, F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photoplymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Semenova, I.

I. Semenova, N. Reinhand, “Holographic spectral selectors,” in Holographic Materials IV, T. J. Trout, ed., Proc. SPIE3294, 207–214 (1998).
[CrossRef]

Semenova, I. V.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J.-M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Shahriar, S. M.

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J.-M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

Shamir, J.

U.-S. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Solomatine, I.

Solymar, L.

L. B. Au, J. C. W. Newell, L. Solymar, “Nonuniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).
[CrossRef]

Steckman, G. J.

Steijn, K.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).

Suhir, E.

Syms, R. R. A.

R. R. A. Syms, Practical Volume Holography (Oxford University Press, New York, 1990).

Tackitt, M.

Tang, W.

D. Liu, W. Tang, W. Huang, Z. Liang, “Relationship between the diffraction efficiency of a reflection hologram and the thickness and absorption of the recording medium,” Opt. Eng. 31, 809–812 (1992).
[CrossRef]

Trout, T. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Verber, C. M.

Vikram, C. S.

U.-S. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
[CrossRef] [PubMed]

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Wagner, K.

Waldman, D. A.

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

D. A. Waldman, H.-Y. S. Li, E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” in Diffractive and Holographic Device Technologies and Applications V, I. Cindrich, S. H. Lee, eds., Proc. SPIE3291, 89–103 (1998).
[CrossRef]

D. A. Waldman, H.-Y. S. Li, “Determination of low transverse shrinkage in slant fringe gratings of a cationic ring-opening volume hologram recording material,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 354–372 (1997).
[CrossRef]

Weber, A. M.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Weiss, V.

V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Imaging Sci. Technol. 41, 371–382 (1997).

V. Weiss, A. A. Friesem, E. Millul, “Control of grating anomolies in photoactive polymers,” in Photopolymer Device Physics, Chemistry, and Applications III, R. A. Lessard, ed., Proc. SPIE2851, 110–117 (1996).

Wilson, W.

Wysocki, T.

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–254 (1999).
[CrossRef]

Wysocki, T. L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photoplymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Xue, S. S.

S. S. Xue, G. Manivannan, R. A. Lessard, “Holographic and spectroscopic characterization of spiropyran doped poly(methyl methacrylate) films,” Thin Solid Films 253, 228–232 (1994).
[CrossRef]

Zhao, C.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Zhao, X.

X. Zhao, X. Mourolis, “Mechanism of grating formation in DuPont photopolymers,” J. Mod. Opt. 41, 1929–1934 (1996).
[CrossRef]

Zhou, G.

Adv. Mater. (1)

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Appl. Opt. (8)

Appl. Phys. Lett. (2)

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, C. Boyd, “Temperature-induced changes in photoplymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Can. J. Phys. (1)

J. J. A. Couture, R. A. Lessard, “Effective thickness determination for volume transmissioni multiplex holograms,” Can. J. Phys. 64, 553–557 (1986).
[CrossRef]

Chem. Mater. (1)

M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, C. Boyd, “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247–254 (1999).
[CrossRef]

J. Appl. Phys. (1)

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

J. Chem. Phys. (1)

C. R. Kagan, T. D. Harris, A. L. Harris, M. L. Schilling, “Submicron confocal Raman imaging of holograms in multicomponent photopolymers,” J. Chem. Phys. 108, 6892–6896 (1998).
[CrossRef]

J. Imaging Sci. Technol. (2)

D. A. Waldman, H.-Y. S. Li, M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Imaging Sci. Technol. 41, 371–382 (1997).

J. Mod. Opt. (3)

D. Liu, G. Manivannan, H. H. Arsenault, R. A. Lessard, “Asymmetry in the diffraction spectrum of a reflection hologram grating,” J. Mod. Opt. 42, 639–653 (1995).
[CrossRef]

L. B. Au, J. C. W. Newell, L. Solymar, “Nonuniformities in thick dichromated gelatin transmission gratings,” J. Mod. Opt. 34, 1211–1225 (1987).
[CrossRef]

X. Zhao, X. Mourolis, “Mechanism of grating formation in DuPont photopolymers,” J. Mod. Opt. 41, 1929–1934 (1996).
[CrossRef]

J. Opt. (1)

W. Chao, S. Chi, “Diffraction properties of windshield laminated photopolymer holograms,” J. Opt. 29, 95–103 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Acta (1)

T. Kubota, “The bending of interference fringes inside a hologram,” Opt. Acta 26, 731–743 (1979).
[CrossRef]

Opt. Eng. (4)

A. Pu, K. Curtis, D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824–2829 (1996).
[CrossRef]

D. Liu, W. Tang, W. Huang, Z. Liang, “Relationship between the diffraction efficiency of a reflection hologram and the thickness and absorption of the recording medium,” Opt. Eng. 31, 809–812 (1992).
[CrossRef]

J. E. Ludman, J. R. Riccobono, N. O. Reinhand, I. V. Semenova, Y. L. Korzinin, S. M. Shahriar, H. J. Caulfield, J.-M. Fournier, P. Hemmer, “Very thick holographic nonspatial filtering of laser beams,” Opt. Eng. 36, 1700–1705 (1997).
[CrossRef]

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839–1847 (1993).
[CrossRef]

Opt. Lett. (4)

Optik (1)

J. J. A. Couture, R. A. Lessard, “Diffraction efficiency changes induced by coupling effects between gratings of transmission holograms,” Optik 68, 69–80 (1984).

Thin Solid Films (1)

S. S. Xue, G. Manivannan, R. A. Lessard, “Holographic and spectroscopic characterization of spiropyran doped poly(methyl methacrylate) films,” Thin Solid Films 253, 228–232 (1994).
[CrossRef]

Other (8)

V. Weiss, A. A. Friesem, E. Millul, “Control of grating anomolies in photoactive polymers,” in Photopolymer Device Physics, Chemistry, and Applications III, R. A. Lessard, ed., Proc. SPIE2851, 110–117 (1996).

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).

I. Semenova, N. Reinhand, “Holographic spectral selectors,” in Holographic Materials IV, T. J. Trout, ed., Proc. SPIE3294, 207–214 (1998).
[CrossRef]

D. A. Waldman, H.-Y. S. Li, E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” in Diffractive and Holographic Device Technologies and Applications V, I. Cindrich, S. H. Lee, eds., Proc. SPIE3291, 89–103 (1998).
[CrossRef]

D. A. Waldman, H.-Y. S. Li, “Determination of low transverse shrinkage in slant fringe gratings of a cationic ring-opening volume hologram recording material,” in Diffractive and Holographic Device Technologies and Applications IV, I. Cindrich, S. H. Lee, eds., Proc. SPIE3010, 354–372 (1997).
[CrossRef]

R. A. Lessard, F. Ghailane, G. Manivannan, “Holographic characterizaion of photochromics-doped-polymers films for holographic memories,” T. Trout, ed., Proc. SPIE2688, 45–51 (1996).

R. R. A. Syms, Practical Volume Holography (Oxford University Press, New York, 1990).

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

M/# versus sample thickness. M/#’s are scaled to correct for small deviations in preexposure conditions when required. Sample thickness was determined by the full width at half-height of the 0° hologram for samples that have not deviated from the linear M/# versus thickness relationship, and by mechanical calipers for thicker samples. Points indicated by squares refer to the photopolymer NVC, and points indicated by circles refer to the photopolymer NVP. The displayed line (slope, 4.13; y intercept, 0.017) represents a best fit for samples with thickness as great as 520 µm for the NVC samples, and the displayed line (slope, 6.87; y intercept, -0.0192) is for the NVP samples with thickness as great as 320 µm. Each point represents an average of several samples, and the error bars depict one standard deviation.

Fig. 2
Fig. 2

Angular response curves for 0° holograms from multiplexed holograms recorded in photopolymers of varying thickness. In these data the vertical dashed lines represent the location of the first nulls of the response functions calculated following Kogelnik22 using thickness measured by mechanical calipers. [(a) 260-µm sample, (b) 560-µm sample, (c) 950-µm sample]. The excessive bandwidth and asymmetry caused by shrinkage is apparent in these data. (a) and (b) are from NVC samples that did fall on the regression line from Fig. 1, and (c) was well below its projected M/# value.

Fig. 3
Fig. 3

Angular response curves for weak single holograms before and after flood exposure. Single holograms were written in two NVC samples of different thickness. These holograms were written at 20° sample rotation and read out before (solid curve) and after (dashed curve) complete flood cure. The sample exposures during the write process were 68 mJ as compared with the total of 2260 mJ normally used to react all monomer. Each readout provided an additional 34 mJ of exposure. These data are displayed with diffraction efficiency on a log scale to emphasize changes in the hologram response, specifically the nature of the changes to the sidelobes that occur with shrinkage. (a) A weak hologram recorded at 60° in a 600-µm-thick sample and read immediately after recording (solid curve) and read again after flood cure (dashed curve). (b) A weak hologram recorded at 20° in a 200-µm-thick sample read prior to flood cure (solid cuve) and read again after a uniform flood cure (dashed curve).

Metrics