Abstract

We describe a method to estimate the thermal conductivity of the substrate, the dielectric layer, the phase-change (PC) layer, and the reflective layer of PC optical recording media. The method relies on the amorphous-to-crystalline phase transition that occurs in the PC layer and takes advantage of the difference in the thermal diffusion behavior under different-sized focused spots. All the results obtained here are reliable with better than ±5% accuracy, which is within the margin of our experimental error.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
    [CrossRef]
  2. N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. 26, Suppl. 26-4, 61–66 (1987).
  3. T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 123–128 (1989).
  4. R. W. Powell, in Thermal Conductivity: Part 2, R. T. Tye, ed. (Academic, London, 1969), pp. 275–338.
  5. C. H. Henager, W. T. Dawlewicz, “Thermal conductivities of thin, sputtered optical films,” Appl. Opt. 32, 91–101 (1993).
    [CrossRef] [PubMed]
  6. D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, R. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
    [CrossRef]
  7. N. Tsutsumi, T. Kiyotsukuri, “Measurement of thermal diffusivity for polymer film by flash radiometry,” Appl. Phys. Lett. 52, 442–444 (1988).
    [CrossRef]
  8. Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B Polym. 33, 33–42 (1995).
    [CrossRef]
  9. E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990).
    [CrossRef]
  10. Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Sympozium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
    [CrossRef]
  11. R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
    [CrossRef]
  12. S. Govorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
    [CrossRef]
  13. C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
    [CrossRef]
  14. Y. C. Hsieh, M. Mansuripur, J. Volkmer, A. Brewen, “Measurement of the thermal coefficients of nonreversible phase-change optical recording films,” Appl. Opt. 36, 866–872 (1997).
    [CrossRef] [PubMed]
  15. W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
    [CrossRef]
  16. P. Nath, K. L. Chopra, “Experimental determination of the thermal conductivity of thin films,” Thin Solid Films 18, 29–37 (1973).
    [CrossRef]
  17. K. A. Rubin, D. P. Birnie, M. Chen, “Effect of multilayer structure and laser pulse width on the reversible cycling of phase-change optical storage media,” J. Appl. Phys. 71, 3680–3687 (1992).
    [CrossRef]
  18. C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
    [CrossRef]
  19. T. Ohta, M. Uchida, K. Yoshioka, K. Inoue, T. Akiyama, S. Furukawa, K. Kotera, S. Nakamura, “Million cycle overwritable phase-change optical disk media,” in Optical Data Storage Topical Meeting, G. R. Knight, C. N. Kurtz, eds., Proc. SPIE1078, 27–34 (1989).
    [CrossRef]
  20. M. Mansuripur, G. A. N. Connell, J. W. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21, 1106–1114 (1982).
    [CrossRef] [PubMed]

1999 (1)

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

1997 (3)

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
[CrossRef]

Y. C. Hsieh, M. Mansuripur, J. Volkmer, A. Brewen, “Measurement of the thermal coefficients of nonreversible phase-change optical recording films,” Appl. Opt. 36, 866–872 (1997).
[CrossRef] [PubMed]

S. Govorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

1996 (1)

R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
[CrossRef]

1995 (1)

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B Polym. 33, 33–42 (1995).
[CrossRef]

1993 (1)

1992 (1)

K. A. Rubin, D. P. Birnie, M. Chen, “Effect of multilayer structure and laser pulse width on the reversible cycling of phase-change optical storage media,” J. Appl. Phys. 71, 3680–3687 (1992).
[CrossRef]

1990 (1)

E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990).
[CrossRef]

1989 (2)

D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, R. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
[CrossRef]

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 123–128 (1989).

1988 (1)

N. Tsutsumi, T. Kiyotsukuri, “Measurement of thermal diffusivity for polymer film by flash radiometry,” Appl. Phys. Lett. 52, 442–444 (1988).
[CrossRef]

1987 (1)

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. 26, Suppl. 26-4, 61–66 (1987).

1986 (1)

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

1982 (1)

1973 (1)

P. Nath, K. L. Chopra, “Experimental determination of the thermal conductivity of thin films,” Thin Solid Films 18, 29–37 (1973).
[CrossRef]

1971 (1)

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Agari, Y.

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B Polym. 33, 33–42 (1995).
[CrossRef]

Akahira, N.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. 26, Suppl. 26-4, 61–66 (1987).

Akiyama, T.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 123–128 (1989).

T. Ohta, M. Uchida, K. Yoshioka, K. Inoue, T. Akiyama, S. Furukawa, K. Kotera, S. Nakamura, “Million cycle overwritable phase-change optical disk media,” in Optical Data Storage Topical Meeting, G. R. Knight, C. N. Kurtz, eds., Proc. SPIE1078, 27–34 (1989).
[CrossRef]

Birnie, D. P.

K. A. Rubin, D. P. Birnie, M. Chen, “Effect of multilayer structure and laser pulse width on the reversible cycling of phase-change optical storage media,” J. Appl. Phys. 71, 3680–3687 (1992).
[CrossRef]

Brewen, A.

Cahill, D. G.

D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, R. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
[CrossRef]

Capinski, W. S.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Cardona, M.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Chen, M.

K. A. Rubin, D. P. Birnie, M. Chen, “Effect of multilayer structure and laser pulse width on the reversible cycling of phase-change optical storage media,” J. Appl. Phys. 71, 3680–3687 (1992).
[CrossRef]

Cheng, L.

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
[CrossRef]

Chopra, K. L.

P. Nath, K. L. Chopra, “Experimental determination of the thermal conductivity of thin films,” Thin Solid Films 18, 29–37 (1973).
[CrossRef]

Connell, G. A. N.

Dawlewicz, W. T.

de Nuerville, J.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Eckhardt, P.

E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990).
[CrossRef]

Eesley, G. L.

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

Feinleib, J.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Fishcher, H. E.

D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, R. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
[CrossRef]

Forster, R.

R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
[CrossRef]

Friedrich, K.

E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990).
[CrossRef]

Furukawa, S.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 123–128 (1989).

T. Ohta, M. Uchida, K. Yoshioka, K. Inoue, T. Akiyama, S. Furukawa, K. Kotera, S. Nakamura, “Million cycle overwritable phase-change optical disk media,” in Optical Data Storage Topical Meeting, G. R. Knight, C. N. Kurtz, eds., Proc. SPIE1078, 27–34 (1989).
[CrossRef]

Gmelin, E.

R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
[CrossRef]

Goodman, J. W.

Govorkov, S.

S. Govorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

Henager, C. H.

Hsieh, Y. C.

Inoue, K.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 123–128 (1989).

T. Ohta, M. Uchida, K. Yoshioka, K. Inoue, T. Akiyama, S. Furukawa, K. Kotera, S. Nakamura, “Million cycle overwritable phase-change optical disk media,” in Optical Data Storage Topical Meeting, G. R. Knight, C. N. Kurtz, eds., Proc. SPIE1078, 27–34 (1989).
[CrossRef]

Katzer, D. S.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Kiyotsukuri, T.

N. Tsutsumi, T. Kiyotsukuri, “Measurement of thermal diffusivity for polymer film by flash radiometry,” Appl. Phys. Lett. 52, 442–444 (1988).
[CrossRef]

Klitsner, T.

D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, R. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
[CrossRef]

Kotera, K.

T. Ohta, M. Uchida, K. Yoshioka, K. Inoue, T. Akiyama, S. Furukawa, K. Kotera, S. Nakamura, “Million cycle overwritable phase-change optical disk media,” in Optical Data Storage Topical Meeting, G. R. Knight, C. N. Kurtz, eds., Proc. SPIE1078, 27–34 (1989).
[CrossRef]

Kozlowski, M.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Sympozium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Kuo, P. K.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Sympozium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Lu, Y. S.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Sympozium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Mansuripur, M.

Maris, H. J.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Moss, S. C.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Nagai, S.

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B Polym. 33, 33–42 (1995).
[CrossRef]

Nagata, K.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 123–128 (1989).

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. 26, Suppl. 26-4, 61–66 (1987).

Nakamura, S.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 123–128 (1989).

T. Ohta, M. Uchida, K. Yoshioka, K. Inoue, T. Akiyama, S. Furukawa, K. Kotera, S. Nakamura, “Million cycle overwritable phase-change optical disk media,” in Optical Data Storage Topical Meeting, G. R. Knight, C. N. Kurtz, eds., Proc. SPIE1078, 27–34 (1989).
[CrossRef]

Nath, P.

P. Nath, K. L. Chopra, “Experimental determination of the thermal conductivity of thin films,” Thin Solid Films 18, 29–37 (1973).
[CrossRef]

Nishiuchi, K.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. 26, Suppl. 26-4, 61–66 (1987).

Ohno, E.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. 26, Suppl. 26-4, 61–66 (1987).

Ohta, T.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 123–128 (1989).

T. Ohta, M. Uchida, K. Yoshioka, K. Inoue, T. Akiyama, S. Furukawa, K. Kotera, S. Nakamura, “Million cycle overwritable phase-change optical disk media,” in Optical Data Storage Topical Meeting, G. R. Knight, C. N. Kurtz, eds., Proc. SPIE1078, 27–34 (1989).
[CrossRef]

Ovshinsky, S. R.

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

Paddock, C. A.

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

Peng, C.

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
[CrossRef]

Ploog, K.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Pohl, R. D.

D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, R. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
[CrossRef]

Powell, R. W.

R. W. Powell, in Thermal Conductivity: Part 2, R. T. Tye, ed. (Academic, London, 1969), pp. 275–338.

Rubin, K. A.

K. A. Rubin, D. P. Birnie, M. Chen, “Effect of multilayer structure and laser pulse width on the reversible cycling of phase-change optical storage media,” J. Appl. Phys. 71, 3680–3687 (1992).
[CrossRef]

Ruderman, W.

S. Govorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

Ruf, T.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Stolz, C.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Sympozium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Swartz, E. T.

D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, R. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
[CrossRef]

Takeo, M.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. 26, Suppl. 26-4, 61–66 (1987).

Thomsen, M.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Sympozium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Tsutsumi, N.

N. Tsutsumi, T. Kiyotsukuri, “Measurement of thermal diffusivity for polymer film by flash radiometry,” Appl. Phys. Lett. 52, 442–444 (1988).
[CrossRef]

Uchida, M.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 123–128 (1989).

T. Ohta, M. Uchida, K. Yoshioka, K. Inoue, T. Akiyama, S. Furukawa, K. Kotera, S. Nakamura, “Million cycle overwritable phase-change optical disk media,” in Optical Data Storage Topical Meeting, G. R. Knight, C. N. Kurtz, eds., Proc. SPIE1078, 27–34 (1989).
[CrossRef]

Veda, A.

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B Polym. 33, 33–42 (1995).
[CrossRef]

Volkmer, J.

Walther, H. G.

E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990).
[CrossRef]

Welsch, E.

E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990).
[CrossRef]

Wu, Z. L.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Sympozium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Yamada, N.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. 26, Suppl. 26-4, 61–66 (1987).

Yoshioka, K.

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 123–128 (1989).

T. Ohta, M. Uchida, K. Yoshioka, K. Inoue, T. Akiyama, S. Furukawa, K. Kotera, S. Nakamura, “Million cycle overwritable phase-change optical disk media,” in Optical Data Storage Topical Meeting, G. R. Knight, C. N. Kurtz, eds., Proc. SPIE1078, 27–34 (1989).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

N. Tsutsumi, T. Kiyotsukuri, “Measurement of thermal diffusivity for polymer film by flash radiometry,” Appl. Phys. Lett. 52, 442–444 (1988).
[CrossRef]

J. Feinleib, J. de Nuerville, S. C. Moss, S. R. Ovshinsky, “Rapid reversible light-induced crystallization of amorphous semiconductors,” Appl. Phys. Lett. 18, 254–257 (1971).
[CrossRef]

J. Appl. Phys. (4)

K. A. Rubin, D. P. Birnie, M. Chen, “Effect of multilayer structure and laser pulse width on the reversible cycling of phase-change optical storage media,” J. Appl. Phys. 71, 3680–3687 (1992).
[CrossRef]

C. Peng, L. Cheng, M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183–4191 (1997).
[CrossRef]

E. Welsch, H. G. Walther, K. Friedrich, P. Eckhardt, “Separation of optical thin film and substrate absorption by means of photothermal surface deformation technique,” J. Appl. Phys. 67, 6575–6578 (1990).
[CrossRef]

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1986).
[CrossRef]

J. Polym. Sci. Part B Polym. (1)

Y. Agari, A. Veda, S. Nagai, “Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method,” J. Polym. Sci. Part B Polym. 33, 33–42 (1995).
[CrossRef]

J. Vac. Sci. Technol. A (1)

D. G. Cahill, H. E. Fishcher, T. Klitsner, E. T. Swartz, R. D. Pohl, “Thermal conductivity of thin film: measurements and understanding,” J. Vac. Sci. Technol. A 7, 1259–1266 (1989).
[CrossRef]

Jpn. J. Appl. Phys. (2)

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takeo, “High speed overwritable phase change optical disk material,” Jpn. J. Appl. Phys. 26, Suppl. 26-4, 61–66 (1987).

T. Ohta, K. Inoue, M. Uchida, K. Yoshioka, T. Akiyama, S. Furukawa, K. Nagata, S. Nakamura, “Phase-change disk media having rapid cooling structure,” Jpn. J. Appl. Phys. 28, Suppl. 28-3, 123–128 (1989).

Phys. Rev. B (1)

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Rev. Sci. Instrum. (2)

R. Forster, E. Gmelin, “Thermal conductivity and diffusivity measurements in the sub-µm and sub-µs scale on centimeter area samples using a microthermocouple,” Rev. Sci. Instrum. 67, 4246–4255 (1996).
[CrossRef]

S. Govorkov, W. Ruderman, “A new method for measuring thermal conductivity of thin films,” Rev. Sci. Instrum. 68, 3828–3834 (1997).
[CrossRef]

Thin Solid Films (1)

P. Nath, K. L. Chopra, “Experimental determination of the thermal conductivity of thin films,” Thin Solid Films 18, 29–37 (1973).
[CrossRef]

Other (3)

T. Ohta, M. Uchida, K. Yoshioka, K. Inoue, T. Akiyama, S. Furukawa, K. Kotera, S. Nakamura, “Million cycle overwritable phase-change optical disk media,” in Optical Data Storage Topical Meeting, G. R. Knight, C. N. Kurtz, eds., Proc. SPIE1078, 27–34 (1989).
[CrossRef]

R. W. Powell, in Thermal Conductivity: Part 2, R. T. Tye, ed. (Academic, London, 1969), pp. 275–338.

Z. L. Wu, M. Thomsen, P. K. Kuo, Y. S. Lu, C. Stolz, M. Kozlowski, “Overview of photothermal characterization of optical thin film coatings,” in 27th Annual Boulder Damage Sympozium: Laser-Induced Damage in Optical Materials: 1995, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2714, 465–481 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the static tester.

Fig. 2
Fig. 2

Reflectivity variation as a function of time during cw-laser irradiation of sample S1 after the sample is moved to a fresh (amorphous) location at time t = 0. In this experiment NA = 0.25, laser power at the sample P 0 = 1 mW, and T base = 22 °C.

Fig. 3
Fig. 3

Plot of the measured threshold laser power versus the base temperature for sample S1 at NA = 0.25. This laser power gives ΔR = 0.8% within Δt = 5 s. Circles, experimental data; dashed line, linear best fit to the data.

Fig. 4
Fig. 4

Dependence of K sub on K ZnS-SiO2 at NA = 0.25, 0.4, and 0.6 for sample S1. In the simulation, P 0 = 0.756 mW and T c - T b = 149.6 °C are used for NA = 0.25, P 0 = 0.50 mW and T c - T b = 153.8 °C for NA = 0.4, and P 0 = 0.312 mW and T c - T b = 154.0 °C for NA = 0.6.

Fig. 5
Fig. 5

Dependence of K sub on K GST at NA = 0.1, 0.25, and 0.6 for sample S2. In the simulation, P 0 = 0.59 mW and T c - T b = 142.3 °C are used for NA = 0.1, P 0= 0.24 mW and T c - T b = 144.8 °C for NA = 0.25, and P 0 = 0.145 mW and T c - T b = 154.8 °C for NA = 0.6.

Fig. 6
Fig. 6

Dependence of K ZnS-SiO2 on K GST at NA = 0.1 and 0.6 for sample S3. In the simulation, P 0 = 0.68 mW and T c - T b = 146.6 °C are used for NA = 0.1, and P 0 = 0.207 mW and T c - T b = 160.4 °C for NA = 0.6.

Fig. 7
Fig. 7

Dependence of K Al-Cr on K GST at NA = 0.25, 0.4, and 0.6 for sample S4. In the simulation, P 0 = 1.394 mW and T c - T b = 158.1 °C are used for NA = 0.25, P 0= 0.887 mW and T c - T b = 154.1 °C for NA = 0.4, and P 0 = 0.452 mW and T c - T b = 137.8 °C for NA = 0.6.

Tables (4)

Tables Icon

Table 1 Multilayer Structure of the Samples and Refractive Index n at 780 nm for Calculation of Absorption

Tables Icon

Table 2 Measured Value of the 1/e Intensity Spot Radius r0 at the Focal Plane of the Objective Lens at 780-nm Wavelength

Tables Icon

Table 3 Comparison of the Experimental (Texp = Tc - Tb) with the Calculated (Tcal) Temperature Differential at Various NA, Assuming KAl-Cr = 0.20 for Sample S5

Tables Icon

Table 4 Estimated Values of Thermal Conductivity (K) for the PC Recording Mediaa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

K2T+g=0.

Metrics