Abstract

Infrared imaging materials with high speed and dynamic range are required for a variety of imaging and diagnostic techniques. We present an organic photorefractive glass that shows high diffraction efficiencies of as great as 40% with 25-µm-thick samples and fast response times of 4.3 ms under irradiation at 790 nm. Furthermore, the intensity dependence and field dependence of the grating decay are investigated.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
    [CrossRef]
  2. K. Meerholz, “Amorphous plastics pave the way for wide-spread holographic applications,” Angew. Chem. Int. Ed. Eng. 109, 945–948 (1997).
    [CrossRef]
  3. S. Schloter, D. Haarer, “Photorefractive materials for holographic interferometry,” Adv. Mater. 9, 991–993 (1997).
    [CrossRef]
  4. D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Röckel, S. R. Marder, “Transillumination imaging through scattering media by use of photorefractive polymers,” Opt. Lett. 23, 153–155 (1998).
    [CrossRef]
  5. D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
    [CrossRef]
  6. U. Hofmann, M. Grasruck, A. Leopold, A. Schreiber, S. Schloter, C. Hohle, P. Strohriegl, D. Haarer, S. J. Zilker, “Correlation between the dispersivity of charge transport and holographic response time in an organic photorefractive glass,” J. Phys. Chem. B (in press).
  7. J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
    [CrossRef]
  8. W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994).
    [CrossRef]
  9. S. Schloter, A. Schreiber, M. Grasruck, A. Leopold, M. A. Kol’chenko, J. Pan, C. Hohle, P. Strohriegl, S. J. Zilker, D. Haarer, “Holographic and photoelectric characterization of a novel photorefractive organic glass,” Appl. Phys. B 68, 899–906 (1999).
    [CrossRef]
  10. R. Bittner, C. Bräuchle, K. Meerholz, “Influence of the glass-transition temperature and the chromophore content on the grating buildup dynamics of poly(N-vinylcarbazole)-based photorefractive polymers,” Appl. Opt. 37, 2843–2851 (1998).
    [CrossRef]
  11. F. Nishida, Y. Tomita, “Polarization anisotropies in the electric-field-dependent diffraction efficiency in azo dye doped photoconducting electro-optic polymer,” J. Appl. Phys. 81, 3348–3353 (1997).
    [CrossRef]
  12. Y. Cui, B. Swedek, N. Cheng, J. Zieba, P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
    [CrossRef]

1999

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

S. Schloter, A. Schreiber, M. Grasruck, A. Leopold, M. A. Kol’chenko, J. Pan, C. Hohle, P. Strohriegl, S. J. Zilker, D. Haarer, “Holographic and photoelectric characterization of a novel photorefractive organic glass,” Appl. Phys. B 68, 899–906 (1999).
[CrossRef]

Y. Cui, B. Swedek, N. Cheng, J. Zieba, P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
[CrossRef]

1998

1997

F. Nishida, Y. Tomita, “Polarization anisotropies in the electric-field-dependent diffraction efficiency in azo dye doped photoconducting electro-optic polymer,” J. Appl. Phys. 81, 3348–3353 (1997).
[CrossRef]

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[CrossRef]

K. Meerholz, “Amorphous plastics pave the way for wide-spread holographic applications,” Angew. Chem. Int. Ed. Eng. 109, 945–948 (1997).
[CrossRef]

S. Schloter, D. Haarer, “Photorefractive materials for holographic interferometry,” Adv. Mater. 9, 991–993 (1997).
[CrossRef]

1994

Bittner, R.

Bjorklund, G. C.

Bräuchle, C.

Casperson, J. D.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Cheng, N.

Y. Cui, B. Swedek, N. Cheng, J. Zieba, P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
[CrossRef]

Cui, Y.

Y. Cui, B. Swedek, N. Cheng, J. Zieba, P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
[CrossRef]

DeClue, M.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Diaz-Garcia, M. A.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Ferrio, K. B.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

Grasruck, M.

S. Schloter, A. Schreiber, M. Grasruck, A. Leopold, M. A. Kol’chenko, J. Pan, C. Hohle, P. Strohriegl, S. J. Zilker, D. Haarer, “Holographic and photoelectric characterization of a novel photorefractive organic glass,” Appl. Phys. B 68, 899–906 (1999).
[CrossRef]

U. Hofmann, M. Grasruck, A. Leopold, A. Schreiber, S. Schloter, C. Hohle, P. Strohriegl, D. Haarer, S. J. Zilker, “Correlation between the dispersivity of charge transport and holographic response time in an organic photorefractive glass,” J. Phys. Chem. B (in press).

Grunnet-Jepsen, A.

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[CrossRef]

Guenther, B. D.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

Haarer, D.

S. Schloter, A. Schreiber, M. Grasruck, A. Leopold, M. A. Kol’chenko, J. Pan, C. Hohle, P. Strohriegl, S. J. Zilker, D. Haarer, “Holographic and photoelectric characterization of a novel photorefractive organic glass,” Appl. Phys. B 68, 899–906 (1999).
[CrossRef]

S. Schloter, D. Haarer, “Photorefractive materials for holographic interferometry,” Adv. Mater. 9, 991–993 (1997).
[CrossRef]

U. Hofmann, M. Grasruck, A. Leopold, A. Schreiber, S. Schloter, C. Hohle, P. Strohriegl, D. Haarer, S. J. Zilker, “Correlation between the dispersivity of charge transport and holographic response time in an organic photorefractive glass,” J. Phys. Chem. B (in press).

Hache, F.

Hendrickx, E.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

Herlocker, J. A.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

Hofmann, U.

U. Hofmann, M. Grasruck, A. Leopold, A. Schreiber, S. Schloter, C. Hohle, P. Strohriegl, D. Haarer, S. J. Zilker, “Correlation between the dispersivity of charge transport and holographic response time in an organic photorefractive glass,” J. Phys. Chem. B (in press).

Hohle, C.

S. Schloter, A. Schreiber, M. Grasruck, A. Leopold, M. A. Kol’chenko, J. Pan, C. Hohle, P. Strohriegl, S. J. Zilker, D. Haarer, “Holographic and photoelectric characterization of a novel photorefractive organic glass,” Appl. Phys. B 68, 899–906 (1999).
[CrossRef]

U. Hofmann, M. Grasruck, A. Leopold, A. Schreiber, S. Schloter, C. Hohle, P. Strohriegl, D. Haarer, S. J. Zilker, “Correlation between the dispersivity of charge transport and holographic response time in an organic photorefractive glass,” J. Phys. Chem. B (in press).

Kippelen, B.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Röckel, S. R. Marder, “Transillumination imaging through scattering media by use of photorefractive polymers,” Opt. Lett. 23, 153–155 (1998).
[CrossRef]

Kol’chenko, M. A.

S. Schloter, A. Schreiber, M. Grasruck, A. Leopold, M. A. Kol’chenko, J. Pan, C. Hohle, P. Strohriegl, S. J. Zilker, D. Haarer, “Holographic and photoelectric characterization of a novel photorefractive organic glass,” Appl. Phys. B 68, 899–906 (1999).
[CrossRef]

Leopold, A.

S. Schloter, A. Schreiber, M. Grasruck, A. Leopold, M. A. Kol’chenko, J. Pan, C. Hohle, P. Strohriegl, S. J. Zilker, D. Haarer, “Holographic and photoelectric characterization of a novel photorefractive organic glass,” Appl. Phys. B 68, 899–906 (1999).
[CrossRef]

U. Hofmann, M. Grasruck, A. Leopold, A. Schreiber, S. Schloter, C. Hohle, P. Strohriegl, D. Haarer, S. J. Zilker, “Correlation between the dispersivity of charge transport and holographic response time in an organic photorefractive glass,” J. Phys. Chem. B (in press).

Marder, S. R.

Meerholz, K.

Mery, S.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

Moerner, W. E.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[CrossRef]

W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994).
[CrossRef]

Nishida, F.

F. Nishida, Y. Tomita, “Polarization anisotropies in the electric-field-dependent diffraction efficiency in azo dye doped photoconducting electro-optic polymer,” J. Appl. Phys. 81, 3348–3353 (1997).
[CrossRef]

Pan, J.

S. Schloter, A. Schreiber, M. Grasruck, A. Leopold, M. A. Kol’chenko, J. Pan, C. Hohle, P. Strohriegl, S. J. Zilker, D. Haarer, “Holographic and photoelectric characterization of a novel photorefractive organic glass,” Appl. Phys. B 68, 899–906 (1999).
[CrossRef]

Peyghambarian, N.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

D. D. Steele, B. L. Volodin, O. Savina, B. Kippelen, N. Peyghambarian, H. Röckel, S. R. Marder, “Transillumination imaging through scattering media by use of photorefractive polymers,” Opt. Lett. 23, 153–155 (1998).
[CrossRef]

Prasad, P. N.

Y. Cui, B. Swedek, N. Cheng, J. Zieba, P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
[CrossRef]

Röckel, H.

Savina, O.

Schloter, S.

S. Schloter, A. Schreiber, M. Grasruck, A. Leopold, M. A. Kol’chenko, J. Pan, C. Hohle, P. Strohriegl, S. J. Zilker, D. Haarer, “Holographic and photoelectric characterization of a novel photorefractive organic glass,” Appl. Phys. B 68, 899–906 (1999).
[CrossRef]

S. Schloter, D. Haarer, “Photorefractive materials for holographic interferometry,” Adv. Mater. 9, 991–993 (1997).
[CrossRef]

U. Hofmann, M. Grasruck, A. Leopold, A. Schreiber, S. Schloter, C. Hohle, P. Strohriegl, D. Haarer, S. J. Zilker, “Correlation between the dispersivity of charge transport and holographic response time in an organic photorefractive glass,” J. Phys. Chem. B (in press).

Schreiber, A.

S. Schloter, A. Schreiber, M. Grasruck, A. Leopold, M. A. Kol’chenko, J. Pan, C. Hohle, P. Strohriegl, S. J. Zilker, D. Haarer, “Holographic and photoelectric characterization of a novel photorefractive organic glass,” Appl. Phys. B 68, 899–906 (1999).
[CrossRef]

U. Hofmann, M. Grasruck, A. Leopold, A. Schreiber, S. Schloter, C. Hohle, P. Strohriegl, D. Haarer, S. J. Zilker, “Correlation between the dispersivity of charge transport and holographic response time in an organic photorefractive glass,” J. Phys. Chem. B (in press).

Silence, S. M.

Steele, D. D.

Strohriegl, P.

S. Schloter, A. Schreiber, M. Grasruck, A. Leopold, M. A. Kol’chenko, J. Pan, C. Hohle, P. Strohriegl, S. J. Zilker, D. Haarer, “Holographic and photoelectric characterization of a novel photorefractive organic glass,” Appl. Phys. B 68, 899–906 (1999).
[CrossRef]

U. Hofmann, M. Grasruck, A. Leopold, A. Schreiber, S. Schloter, C. Hohle, P. Strohriegl, D. Haarer, S. J. Zilker, “Correlation between the dispersivity of charge transport and holographic response time in an organic photorefractive glass,” J. Phys. Chem. B (in press).

Swedek, B.

Y. Cui, B. Swedek, N. Cheng, J. Zieba, P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
[CrossRef]

Thompson, C. L.

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[CrossRef]

Tomita, Y.

F. Nishida, Y. Tomita, “Polarization anisotropies in the electric-field-dependent diffraction efficiency in azo dye doped photoconducting electro-optic polymer,” J. Appl. Phys. 81, 3348–3353 (1997).
[CrossRef]

Twieg, R. J.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Volodin, B. L.

Wright, D.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

Zieba, J.

Y. Cui, B. Swedek, N. Cheng, J. Zieba, P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
[CrossRef]

Zilker, S. J.

S. Schloter, A. Schreiber, M. Grasruck, A. Leopold, M. A. Kol’chenko, J. Pan, C. Hohle, P. Strohriegl, S. J. Zilker, D. Haarer, “Holographic and photoelectric characterization of a novel photorefractive organic glass,” Appl. Phys. B 68, 899–906 (1999).
[CrossRef]

U. Hofmann, M. Grasruck, A. Leopold, A. Schreiber, S. Schloter, C. Hohle, P. Strohriegl, D. Haarer, S. J. Zilker, “Correlation between the dispersivity of charge transport and holographic response time in an organic photorefractive glass,” J. Phys. Chem. B (in press).

Adv. Mater.

S. Schloter, D. Haarer, “Photorefractive materials for holographic interferometry,” Adv. Mater. 9, 991–993 (1997).
[CrossRef]

Angew. Chem. Int. Ed. Eng.

K. Meerholz, “Amorphous plastics pave the way for wide-spread holographic applications,” Angew. Chem. Int. Ed. Eng. 109, 945–948 (1997).
[CrossRef]

Annu. Rev. Mater. Sci.

W. E. Moerner, A. Grunnet-Jepsen, C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. Schloter, A. Schreiber, M. Grasruck, A. Leopold, M. A. Kol’chenko, J. Pan, C. Hohle, P. Strohriegl, S. J. Zilker, D. Haarer, “Holographic and photoelectric characterization of a novel photorefractive organic glass,” Appl. Phys. B 68, 899–906 (1999).
[CrossRef]

Appl. Phys. Lett.

D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
[CrossRef]

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
[CrossRef]

J. Appl. Phys.

F. Nishida, Y. Tomita, “Polarization anisotropies in the electric-field-dependent diffraction efficiency in azo dye doped photoconducting electro-optic polymer,” J. Appl. Phys. 81, 3348–3353 (1997).
[CrossRef]

Y. Cui, B. Swedek, N. Cheng, J. Zieba, P. N. Prasad, “Dynamics of photorefractive grating erasure in polymeric composites,” J. Appl. Phys. 85, 38–43 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Other

U. Hofmann, M. Grasruck, A. Leopold, A. Schreiber, S. Schloter, C. Hohle, P. Strohriegl, D. Haarer, S. J. Zilker, “Correlation between the dispersivity of charge transport and holographic response time in an organic photorefractive glass,” J. Phys. Chem. B (in press).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Investigated PR glass consisting of (a) the bifunctional molecule DRDCTA, (b) the sensitizer TNFDM, and (c) the plasticizer EHMPA.

Fig. 2
Fig. 2

Diffraction efficiency as a function of time for different external electric fields (32, 40, 48, 56, 64, 72, and 80 V/µm).

Fig. 3
Fig. 3

Rise (lower) and decay (upper) curve at a writing intensity of 7.2 W/cm2 and an electric field of 80 V/µm. One can clearly see the different weighting factors of the fast process.

Fig. 4
Fig. 4

Intensity dependence of the speed of the grating buildup τ r -1 (open circles) and of the grating decay τ d -1 (filled circles, fit error ∼10%). The squares give the maximum diffraction efficiency during a 400-s writing cycle, and the dashed curve is a guide for the eye. The solid line is a power-law fit to the speed. The applied electric field is 80 V/µm.

Fig. 5
Fig. 5

Intensity dependence of the grating erasure speed τ d -1 for different electric fields. Solid lines, fits with a power law.

Fig. 6
Fig. 6

Relaxation dynamics of a grating that was written with 40 mW/cm2 at an applied field of 72 V/µm. The upper curve is a dark relaxation result (both writing beams switched off), and the lower one is an erasure curve (only one writing beam blocked).

Fig. 7
Fig. 7

Parameters of the KWW fits [see Eq. (1)] to the dark relaxation of gratings written with a beam intensity of 40 mW/cm2. Main figure, electric field dependence of the time constant τKWW; the solid curve is a guide for the eye. Inset, KWW parameter β.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δntexp-t/τKWWβ

Metrics