Abstract

A new, to our knowledge, space-variant optical interconnection system based on a spatial-phase code-division multiple-access technique with multiplexed Fourier holography is described. In this technique a signal beam is spread over wide spatial frequencies by an M-sequence pseudorandom phase code. At a receiver side a selected signal beam is properly decoded, and at the same time its spatial pattern is shaped with a Fourier hologram, which is recorded by light that is encoded with the same M-sequence phase mask as the desired signal beam and by light whose spatial beam pattern is shaped to a signal routing pattern. Using the multiplexed holography, we can simultaneously route multisignal flows into individually specified receiver elements. The routing pattern can also be varied by means of switching the encoding phase code or replacing the hologram. We demonstrated a proof-of-principle experiment with a doubly multiplexed hologram that enables simultaneous routing of two signal beams. Using a numerical model, we showed that the proposed scheme can manage more than 250 routing patterns for one signal flow with one multiplexed hologram at a signal-to-noise ratio of ∼5.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
    [Crossref]
  2. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Phys. 27, 1742–1751 (1988).
  3. F. A. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
    [Crossref]
  4. T. Yatagai, S. Kawai, H. Huang, “Optical computing and interconnects,” Proc. IEEE 84, 828–852 (1996).
    [Crossref]
  5. L. Cheng, A. A. Sawchuk, “Three-dimensional omega networks for optical implementation,” Appl. Opt. 31, 5468–5479 (1992).
    [Crossref] [PubMed]
  6. J. E. Ford, S. H. Lee, Y. Fainman, “Application of photorefractive crystal to optical interconnection,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. SPIE1215, 155–165 (1990).
    [Crossref]
  7. B. Bianco, T. Tommasi, “Space-variant optical interconnection through the use of computer-generated holograms,” Appl. Opt. 34, 7573–7580 (1995).
    [Crossref] [PubMed]
  8. J. A. Salehi, E. G. Paek, “Holographic CDMA,” IEEE Trans. Commun. 43, 2434–2438 (1995).
    [Crossref]
  9. A. A. Hassan, J. E. Hershey, N. A. Riza, “Spatial optical CDMA,” IEEE J. Sel. Areas Commun. 13, 609–613 (1995).
    [Crossref]
  10. K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1996).
    [Crossref]
  11. K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
    [Crossref]
  12. S. T. Warr, R. J. Mears, “Polarization insensitive operation of ferroelectric liquid crystal devices,” Electron. Lett. 31, 714–716 (1995).
    [Crossref]
  13. S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–28 (1992).
    [Crossref]
  14. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
    [Crossref] [PubMed]
  15. K. Takasago, T. Itoh, M. Takekawa, K. Utoh, F. Kannari, “Design of frequency-domain filters for femtosecond pulse shaping,” Jpn. J. Appl. Phys. 35, 624–629 (1996).
    [Crossref]
  16. F. Macwilliams, N. Slone, “Pseudo-random sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
    [Crossref]

1997 (1)

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[Crossref]

1996 (4)

K. Takasago, T. Itoh, M. Takekawa, K. Utoh, F. Kannari, “Design of frequency-domain filters for femtosecond pulse shaping,” Jpn. J. Appl. Phys. 35, 624–629 (1996).
[Crossref]

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1996).
[Crossref]

F. A. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
[Crossref]

T. Yatagai, S. Kawai, H. Huang, “Optical computing and interconnects,” Proc. IEEE 84, 828–852 (1996).
[Crossref]

1995 (4)

B. Bianco, T. Tommasi, “Space-variant optical interconnection through the use of computer-generated holograms,” Appl. Opt. 34, 7573–7580 (1995).
[Crossref] [PubMed]

J. A. Salehi, E. G. Paek, “Holographic CDMA,” IEEE Trans. Commun. 43, 2434–2438 (1995).
[Crossref]

A. A. Hassan, J. E. Hershey, N. A. Riza, “Spatial optical CDMA,” IEEE J. Sel. Areas Commun. 13, 609–613 (1995).
[Crossref]

S. T. Warr, R. J. Mears, “Polarization insensitive operation of ferroelectric liquid crystal devices,” Electron. Lett. 31, 714–716 (1995).
[Crossref]

1992 (2)

S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–28 (1992).
[Crossref]

L. Cheng, A. A. Sawchuk, “Three-dimensional omega networks for optical implementation,” Appl. Opt. 31, 5468–5479 (1992).
[Crossref] [PubMed]

1988 (1)

M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Phys. 27, 1742–1751 (1988).

1984 (1)

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[Crossref]

1983 (1)

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[Crossref] [PubMed]

1976 (1)

F. Macwilliams, N. Slone, “Pseudo-random sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
[Crossref]

Athale, R. A.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[Crossref]

Bianco, B.

Broomfield, S. E.

S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–28 (1992).
[Crossref]

Cheng, L.

Esener, S. C.

M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Phys. 27, 1742–1751 (1988).

Fainman, Y.

J. E. Ford, S. H. Lee, Y. Fainman, “Application of photorefractive crystal to optical interconnection,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. SPIE1215, 155–165 (1990).
[Crossref]

Feldman, M. R.

M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Phys. 27, 1742–1751 (1988).

Ford, J. E.

J. E. Ford, S. H. Lee, Y. Fainman, “Application of photorefractive crystal to optical interconnection,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. SPIE1215, 155–165 (1990).
[Crossref]

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[Crossref] [PubMed]

Goodman, J. W.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[Crossref]

Guest, C. C.

M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Phys. 27, 1742–1751 (1988).

Hassan, A. A.

A. A. Hassan, J. E. Hershey, N. A. Riza, “Spatial optical CDMA,” IEEE J. Sel. Areas Commun. 13, 609–613 (1995).
[Crossref]

Hershey, J. E.

A. A. Hassan, J. E. Hershey, N. A. Riza, “Spatial optical CDMA,” IEEE J. Sel. Areas Commun. 13, 609–613 (1995).
[Crossref]

Huang, H.

T. Yatagai, S. Kawai, H. Huang, “Optical computing and interconnects,” Proc. IEEE 84, 828–852 (1996).
[Crossref]

Igasaki, Y.

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[Crossref]

Itoh, T.

K. Takasago, T. Itoh, M. Takekawa, K. Utoh, F. Kannari, “Design of frequency-domain filters for femtosecond pulse shaping,” Jpn. J. Appl. Phys. 35, 624–629 (1996).
[Crossref]

Kaneda, K.

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[Crossref]

Kannari, F.

K. Takasago, T. Itoh, M. Takekawa, K. Utoh, F. Kannari, “Design of frequency-domain filters for femtosecond pulse shaping,” Jpn. J. Appl. Phys. 35, 624–629 (1996).
[Crossref]

Kawai, S.

T. Yatagai, S. Kawai, H. Huang, “Optical computing and interconnects,” Proc. IEEE 84, 828–852 (1996).
[Crossref]

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[Crossref] [PubMed]

Kitayama, K.

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[Crossref]

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1996).
[Crossref]

Kung, S. Y.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[Crossref]

Lee, S. H.

M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Phys. 27, 1742–1751 (1988).

J. E. Ford, S. H. Lee, Y. Fainman, “Application of photorefractive crystal to optical interconnection,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. SPIE1215, 155–165 (1990).
[Crossref]

Leonberger, F. I.

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[Crossref]

Macwilliams, F.

F. Macwilliams, N. Slone, “Pseudo-random sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
[Crossref]

Mears, R. J.

S. T. Warr, R. J. Mears, “Polarization insensitive operation of ferroelectric liquid crystal devices,” Electron. Lett. 31, 714–716 (1995).
[Crossref]

Nakamura, M.

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[Crossref]

Neil, M. A. A.

S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–28 (1992).
[Crossref]

Paek, E. G.

J. A. Salehi, E. G. Paek, “Holographic CDMA,” IEEE Trans. Commun. 43, 2434–2438 (1995).
[Crossref]

Paige, E. G. S.

S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–28 (1992).
[Crossref]

Riza, N. A.

A. A. Hassan, J. E. Hershey, N. A. Riza, “Spatial optical CDMA,” IEEE J. Sel. Areas Commun. 13, 609–613 (1995).
[Crossref]

Salehi, J. A.

J. A. Salehi, E. G. Paek, “Holographic CDMA,” IEEE Trans. Commun. 43, 2434–2438 (1995).
[Crossref]

Sawchuk, A. A.

Slone, N.

F. Macwilliams, N. Slone, “Pseudo-random sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
[Crossref]

Takasago, K.

K. Takasago, T. Itoh, M. Takekawa, K. Utoh, F. Kannari, “Design of frequency-domain filters for femtosecond pulse shaping,” Jpn. J. Appl. Phys. 35, 624–629 (1996).
[Crossref]

Takekawa, M.

K. Takasago, T. Itoh, M. Takekawa, K. Utoh, F. Kannari, “Design of frequency-domain filters for femtosecond pulse shaping,” Jpn. J. Appl. Phys. 35, 624–629 (1996).
[Crossref]

Tommasi, T.

Tooley, F. A.

F. A. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
[Crossref]

Utoh, K.

K. Takasago, T. Itoh, M. Takekawa, K. Utoh, F. Kannari, “Design of frequency-domain filters for femtosecond pulse shaping,” Jpn. J. Appl. Phys. 35, 624–629 (1996).
[Crossref]

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[Crossref] [PubMed]

Warr, S. T.

S. T. Warr, R. J. Mears, “Polarization insensitive operation of ferroelectric liquid crystal devices,” Electron. Lett. 31, 714–716 (1995).
[Crossref]

Yang, G. G.

S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–28 (1992).
[Crossref]

Yatagai, T.

T. Yatagai, S. Kawai, H. Huang, “Optical computing and interconnects,” Proc. IEEE 84, 828–852 (1996).
[Crossref]

Appl. Opt. (2)

Appl. Phys. (1)

M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Phys. 27, 1742–1751 (1988).

Electron. Lett. (2)

S. T. Warr, R. J. Mears, “Polarization insensitive operation of ferroelectric liquid crystal devices,” Electron. Lett. 31, 714–716 (1995).
[Crossref]

S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–28 (1992).
[Crossref]

IEEE J. Sel. Areas Commun. (2)

A. A. Hassan, J. E. Hershey, N. A. Riza, “Spatial optical CDMA,” IEEE J. Sel. Areas Commun. 13, 609–613 (1995).
[Crossref]

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Sel. Areas Commun. 12, 762–772 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. A. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996).
[Crossref]

IEEE Trans. Commun. (1)

J. A. Salehi, E. G. Paek, “Holographic CDMA,” IEEE Trans. Commun. 43, 2434–2438 (1995).
[Crossref]

J. Lightwave Technol. (1)

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Takasago, T. Itoh, M. Takekawa, K. Utoh, F. Kannari, “Design of frequency-domain filters for femtosecond pulse shaping,” Jpn. J. Appl. Phys. 35, 624–629 (1996).
[Crossref]

Proc. IEEE (3)

F. Macwilliams, N. Slone, “Pseudo-random sequences and arrays,” Proc. IEEE 64, 1715–1729 (1976).
[Crossref]

J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[Crossref]

T. Yatagai, S. Kawai, H. Huang, “Optical computing and interconnects,” Proc. IEEE 84, 828–852 (1996).
[Crossref]

Science (1)

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671–680 (1983).
[Crossref] [PubMed]

Other (1)

J. E. Ford, S. H. Lee, Y. Fainman, “Application of photorefractive crystal to optical interconnection,” in Digital Optical Computing II, R. Arrathoon, ed., Proc. SPIE1215, 155–165 (1990).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

General organization of the parallel multiprocessor.

Fig. 2
Fig. 2

Examples of free-space optical interconnection architectures based on holographic techniques: (a) scheme using a volume holography with angular multiplexing, (b) combination of a microlens array and a subhologram array.

Fig. 3
Fig. 3

Experimental setup of Fourier holography switching. Two sets of experimental results for a phase code applied on the LC-SLM and corresponding switched-out pattern are shown. Theoretical predictions for the output beam patterns are also shown with a dashed curve.

Fig. 4
Fig. 4

Our proposed spatial-phase CDMA system combined with Fourier holography switches: left-hand side, transmitter nodes; right-hand side, receiver nodes. On the transmitter side the signal is spatially encoded with pseudorandom phase key code on the Fourier plane and transferred to all the receiver nodes after through a common data transfer way. On the receiver side the spatially encoded signal is decoded when the pseudorandom code mask on the Fourier plane of the receiver matches one of the transmitter’s code, whereas other unmatched patterns remain the noiselike pattern. The successfully decoded beam is also switched toward preprogrammed receiver elements by the hologram embedded in the decoder mask.

Fig. 5
Fig. 5

Example of the pseudonoise pattern generations with M-sequence pseudorandom phase code realized in a 128-pixel LC-SLM. The dashed curve is a decoded pattern with the right M-sequence phase mask.

Fig. 6
Fig. 6

Experimental setup to demonstrate the part of our proposed scheme. The system is divided into two stages: (a) writing a hologram and (b) reading it. In our experiments, twin-peak patterns with separation 115 and 190 µm were multiplexed.

Fig. 7
Fig. 7

Experimental results of (2×) CDMA scheme. The diffracted beam patterns when the reading beam is encoded with one of the M-series codes used for writing the hologram are shown in (a) and (b). When the encoded pattern does not match either of the written codes, only a low-intensity pseudonoise pattern (c) is generated. Theoretical predictions are shown with a dashed curve.

Fig. 8
Fig. 8

Experimental setup for CDMA scheme when two signals flow simultaneously to one receivers. Phase-mask patterns given to the two encoders and a kinoform-type CGH decoder are inserted.

Fig. 9
Fig. 9

Results of the experiment with two transmitters. (a) and (b) are beam patterns decoded with the beam from transmitters 1 and 2, respectively. (c) Decoded pattern when both beams from transmitters 1 and 2 are received. (d) Pattern generated when neither encoding code is matched with the decoder.

Fig. 10
Fig. 10

Simulation results on the S/N performance when a single encoded beam illuminates a multiplexed holographic switch. All the recorded holograms steer the input light into a certain node. An example of a switched-out beam profile for a multiplexed hologram with 225 beams is shown in (a). S/N ratios for various multiplicities are plotted in (b). Similar calculation results performed with a kinoform-type CGH are plotted with a dashed curve.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

EREM1+EREM2.
EREM1EM1*+EREM2EM1*.
eR+eR * eM2eM2,
eR * eS1+eR * eS1 * eM1eM2.
I  |ERES1EM1 expjk1r+ER expjk2r|2+|ERES2EM2 expjk1r+ER expjk2r|2=|ERES1EM1|2+|ER|2+|ER|2ES1EM1 expjk1-k2r+|ER|2ES1*EM1* expj-k1+k2r+|ERES2EM2|2+|ER|2+|ER|2ES2EM2 expjk1-k2r+|ER|2ES2*EM2*expj-k1+k2r.
Eout=EinT=t0|ERES1EM1|2+|ERES2EM2|2+2|ER|2EREM1 expjk1r-t1|ER|2ERES1EM1EM1+ERES2EM2EM1expj2k1-k2r-t1|ER|2ERES1*EM1*EM1+ERES2*EM2*EM1expjk2r,
Eout=-t1|ER|2ERES1*EM1*EM1+ ERES2*EM2*EM1expjk2r-t1|ER|2ERES1*EM1*EM2+ ERES2*EM2*EM2expjk2r-t1ERES1*+ERES2*expjk2r,

Metrics