Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Monte Carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain

Not Accessible

Your library or personal account may give you access

Abstract

We propose a hybrid Monte Carlo (MC) diffusion model for calculating the spatially resolved reflectance amplitude and phase delay resulting from an intensity-modulated pencil beam vertically incident on a two-layer turbid medium. The model combines the accuracy of MC at radial distances near the incident beam with the computational efficiency afforded by a diffusion calculation at further distances. This results in a single forward calculation several hundred times faster than pure MC, depending primarily on model parameters. Model predictions are compared with MC data for two cases that span the extremes of physiologically relevant optical properties: skin overlying fat and skin overlying muscle, both in the presence of an exogenous absorber. It is shown that good agreement can be achieved for radial distances from 0.5 to 20 mm in both cases. However, in the skin-on-muscle case the choice of model parameters and the definition of the diffusion coefficient can lead to some interesting discrepancies.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model

George Alexandrakis, David R. Busch, Gregory W. Faris, and Michael S. Patterson
Appl. Opt. 40(22) 3810-3821 (2001)

Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance

Tuan H. Pham, Thorsten Spott, Lars O. Svaasand, and Bruce J. Tromberg
Appl. Opt. 39(25) 4733-4745 (2000)

Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium

George Alexandrakis, Thomas J. Farrell, and Michael S. Patterson
Appl. Opt. 37(31) 7401-7409 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved