Abstract

High-quality broadband infrared high-resolution spectra were obtained by use of the intracavity laser absorption spectroscopy technique with a Ti:sapphire laser in combination with a continuous-scan Fourier-transform (FT) interferometer. With electronic filtering used to smooth out the fluctuations of the laser power, the absorption of atmospheric water vapor in the range of 12,450–12,700 cm-1 was recorded at a resolution of 0.05 cm-1. A signal-to-noise ratio of greater than 300 was observed in this spectrum, corresponding to a minimum detectable absorption of approximately 2 × 10-9 cm-1. Comparison with previous measurements by use of a conventional FT technique shows that this method gives absorption spectra with highly accurate line positions along with reasonable line intensities. Investigation of the evolution of intracavity laser absorption spectra with the generation time is also shown to be possible with a continuous-scan FT spectrometer by use of the interleave rapid-scan method.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification line,” JETP Lett. 12, 43–45 (1970).
  2. A. C. Peterson, M. J. Kurilo, W. Braun, A. M. Bass, R. A. Keller, “Enhancement of absorption spectra by dye-laser quenching,” J. Opt. Soc. Am. 61, 746–750 (1971).
    [CrossRef]
  3. T. W. Hänsh, A. L. Schawlow, P. E. Toschek, “Ultrasensitive response of a CW dye laser to selective extinction,” IEEE J. Quantum Electron. QE-8, 802–804 (1972).
    [CrossRef]
  4. V. M. Baev, T. Latz, P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
    [CrossRef]
  5. A. Campargue, F. Stoeckel, M. Chenevier, “High-sensitivity intracavity laser spectroscopy—applications to the study of overtone transitions in the visible range,” Spectrochim. Acta Rev. 13, 69–88 (1990).
  6. V. M. Baev, T. P. Belikova, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).
  7. M. Chevenier, M. A. Mélières, F. Stoeckel, “Intracavity absorption line shapes and quantitative measurements on O2,” Opt. Commun. 45, 385 (1983).
    [CrossRef]
  8. M. A. Mélières, M. Chenevier, F. Stoeckel, “Intensity measurements and self-broadening coefficients in the γ band of O2 at 628 nm using intracavity laser-absorption spectroscopy (ICLAS),” J. Quant. Spectrosc. Radiat. Transfer 33, 337 (1985).
    [CrossRef]
  9. D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–388 (1990).
    [CrossRef]
  10. A. Kachanov, A. Charvat, F. Stoeckel, “Intracavity laser spectroscopy with vibronic solid-state lasers. II. Influence of the nonlinear mode coupling on the maximum sensitivity of a Ti:sapphire laser,” J. Opt. Soc. Am. B 12, 970–979 (1995).
    [CrossRef]
  11. B. Kalmar, J. J. O’Brien, “Quantitative intracavity laser spectroscopy measurements with a Ti:sapphire laser: absorption intensities for water vapor lines in the 790–800 nm region,” J. Mol. Spectrosc. 192, 386–393 (1998).
    [CrossRef] [PubMed]
  12. A. del Olmo, C. Domingo, J. M. Orza, D. Bermejo, “FT intracavity laser spectroscopy: the B-X transition of Cl2,” J. Mol. Spectrosc. 145, 323–330 (1991).
    [CrossRef]
  13. C. Domingo, A. del Olmo, R. Escribano, J. M. Orza, “Fourier transform intracavity laser absorption spectra of 6ν1 band of CDH3,” J. Chem. Phys. 96, 972–975 (1991).
    [CrossRef]
  14. K. Strong, T. Johnson, G. W. Harris, “Visible intracavity laser spectroscopy with a step-scan Fourier transform interferometer,” Appl. Opt. 36, 8533–8540 (1997).
    [CrossRef]
  15. P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A step-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
    [CrossRef]
  16. V. Petricevic, S. K. Gayen, R. R. Alfano, “Near infrared tunable operation of chromium doped forsterite laser,” Appl. Opt. 28, 1609–1611 (1989).
    [CrossRef] [PubMed]
  17. D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38–1.55µm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993).
    [CrossRef]
  18. D. Welford, P. F. Moulton, “Room-temperature operation of a Co:MgF2 laser,” Opt. Lett. 13, 975–977 (1988).
    [CrossRef] [PubMed]
  19. M. P. Frolov, Y. P. Podmarkov, “Intracavity laser spectroscopy with a Co:MgF2 laser,” Opt. Commun. 155, 313–316 (1988).
    [CrossRef]
  20. V. R. Mironenko, V. I. Yudson, “Quantum statistics of multimode lasing and noise in intracavity laser spectroscopy,” Sov. Phys. JETP 52, 594–602 (1980).
  21. V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
    [CrossRef]
  22. S. A. Kovalenko, “Quantum intensity fluctuations in multi-mode cw lasers and maximum sensitivity of intracavity laser spectroscopy,” Sov. J. Quantum Electron. 11, 759–762 (1981).
    [CrossRef]
  23. V. M. Baev, G. Gaida, H. Schroder, P. E. Toschek, “Quantum fluctuations of multi-mode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
    [CrossRef]
  24. A. A. Kachanov, V. R. Mironenko, I. K. Pashkovich, “Quantum threshold of the sensitivity of an intracavity traveling-wave laser spectrometer,” Sov. J. Quantum Electron. 19, 95–98 (1989).
    [CrossRef]
  25. P. Fellgett, “Theory of multiplex interferometric spectrometry,” J. Phys. Radium 19, 187–191 (1958).
    [CrossRef]
  26. F. Stoeckel, M. A. Mélières, M. Chenevier, “Quantitative measurement of very weak H2O absorption lines by time-resolved intracavity laser spectroscopy,” J. Chem. Phys. 76, 2191–2196 (1982).
    [CrossRef]
  27. H. Lin, X. G. Wang, S. F. Yang, S. M. Hu, Q. S. Zhu, “Study of an intracavity laser absorption spectrometer incorporated with the Fourier transform spectrometer,” Chin. J. Lasers 25, 1008–1012 (1998).
  28. A. Kachanov, A. Charvat, F. Stoeckel, “Intracavity laser spectroscopy with vibronic solid-state lasers. I. Spectrotemporal transient behavior of a Ti:sapphire laser,” J. Opt. Soc. Am. B 11, 2412–2421 (1994).
    [CrossRef]
  29. J. J. Sloan, E. J. Kruus, “Time-resolved Fourier transform spectroscopy,” in Time Resolved Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1989), pp. 219–253.
  30. P. R. Griffiths, J. A. de Haseth, “Chemical analysis,” in Fourier Transform Infrared Spectrometry, P. J. Elving, J. D. Winefordner, eds. (Wiley, New York, 1986), p. 15.
  31. H. Weidner, R. E. Peale, “Time-resolved Fourier spectroscopy for activated optical materials,” Appl. Opt. 35, 2849–2855 (1996).
    [CrossRef] [PubMed]
  32. A. S. Zachor, I. Coleman, W. G. Mankin, “Effect of drive nonlinearities in Fourier spectroscopy,” in Spectroscopic Techniques, G. A. Vanasse, ed. (Academic, San Diego, Calif., 1981), Vol. 2, Chap. 3, pp. 1–62.
  33. H. Weidner, R. E. Peal, “Event-locked time-resolved Fourier spectroscopy,” Appl. Spectrosc. 51, 1106–1112 (1997).
    [CrossRef]
  34. E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plankhotnik, “Dependence of the sensitivity of intracavity laser spectrometer on generation parameters,” Opt. Commun. 46, 126–130 (1983).
    [CrossRef]
  35. R. A. Toth, “Measurement of H216O line positions and strengths: 11610 to 12861 cm-1,” J. Mol. Spectrosc. 116, 176–183 (1994).
    [CrossRef]
  36. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  37. The function form for Norton–Beer–Weak is W(Δ) = c0 + c1[1 - (Δ/Δm)2] + c2{[1 - (Δ/Δm)2]}2, where c0 = 0.34809, c1 = -0.08758, and c2 = 0.70348. Δ is the OPD value, and Δm is the maximal OPD.
  38. P. L. Ponsardin, E. V. Browell, “Measurements of H216O line strengths and air-induced broadenings and shifts in the 815-nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997).
    [CrossRef] [PubMed]
  39. G. Guelachvili, “Distortions in Fourier spectra and diagnosis,” in Spectroscopic Techniques, G. A. Vanasse, ed. (Academic, San Diego, Calif., 1981), Vol. 2, Chap. 3, pp. 127–160.
  40. The function form for the Blackman–Harris three term is W(Δ) = a0 + a1 cos(2πΔ/Δm) + a2 cos(4πΔ/Δm), where a0 = 0.42323, a1 = 0.49755, and a2 = 0.07922.

1999

V. M. Baev, T. Latz, P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

1998

B. Kalmar, J. J. O’Brien, “Quantitative intracavity laser spectroscopy measurements with a Ti:sapphire laser: absorption intensities for water vapor lines in the 790–800 nm region,” J. Mol. Spectrosc. 192, 386–393 (1998).
[CrossRef] [PubMed]

H. Lin, X. G. Wang, S. F. Yang, S. M. Hu, Q. S. Zhu, “Study of an intracavity laser absorption spectrometer incorporated with the Fourier transform spectrometer,” Chin. J. Lasers 25, 1008–1012 (1998).

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

1997

1996

1995

1994

1993

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38–1.55µm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993).
[CrossRef]

1991

A. del Olmo, C. Domingo, J. M. Orza, D. Bermejo, “FT intracavity laser spectroscopy: the B-X transition of Cl2,” J. Mol. Spectrosc. 145, 323–330 (1991).
[CrossRef]

C. Domingo, A. del Olmo, R. Escribano, J. M. Orza, “Fourier transform intracavity laser absorption spectra of 6ν1 band of CDH3,” J. Chem. Phys. 96, 972–975 (1991).
[CrossRef]

1990

A. Campargue, F. Stoeckel, M. Chenevier, “High-sensitivity intracavity laser spectroscopy—applications to the study of overtone transitions in the visible range,” Spectrochim. Acta Rev. 13, 69–88 (1990).

P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A step-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
[CrossRef]

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–388 (1990).
[CrossRef]

1989

A. A. Kachanov, V. R. Mironenko, I. K. Pashkovich, “Quantum threshold of the sensitivity of an intracavity traveling-wave laser spectrometer,” Sov. J. Quantum Electron. 19, 95–98 (1989).
[CrossRef]

V. Petricevic, S. K. Gayen, R. R. Alfano, “Near infrared tunable operation of chromium doped forsterite laser,” Appl. Opt. 28, 1609–1611 (1989).
[CrossRef] [PubMed]

1988

D. Welford, P. F. Moulton, “Room-temperature operation of a Co:MgF2 laser,” Opt. Lett. 13, 975–977 (1988).
[CrossRef] [PubMed]

M. P. Frolov, Y. P. Podmarkov, “Intracavity laser spectroscopy with a Co:MgF2 laser,” Opt. Commun. 155, 313–316 (1988).
[CrossRef]

1985

M. A. Mélières, M. Chenevier, F. Stoeckel, “Intensity measurements and self-broadening coefficients in the γ band of O2 at 628 nm using intracavity laser-absorption spectroscopy (ICLAS),” J. Quant. Spectrosc. Radiat. Transfer 33, 337 (1985).
[CrossRef]

1983

M. Chevenier, M. A. Mélières, F. Stoeckel, “Intracavity absorption line shapes and quantitative measurements on O2,” Opt. Commun. 45, 385 (1983).
[CrossRef]

E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plankhotnik, “Dependence of the sensitivity of intracavity laser spectrometer on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

1982

F. Stoeckel, M. A. Mélières, M. Chenevier, “Quantitative measurement of very weak H2O absorption lines by time-resolved intracavity laser spectroscopy,” J. Chem. Phys. 76, 2191–2196 (1982).
[CrossRef]

1981

S. A. Kovalenko, “Quantum intensity fluctuations in multi-mode cw lasers and maximum sensitivity of intracavity laser spectroscopy,” Sov. J. Quantum Electron. 11, 759–762 (1981).
[CrossRef]

V. M. Baev, G. Gaida, H. Schroder, P. E. Toschek, “Quantum fluctuations of multi-mode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
[CrossRef]

1980

V. R. Mironenko, V. I. Yudson, “Quantum statistics of multimode lasing and noise in intracavity laser spectroscopy,” Sov. Phys. JETP 52, 594–602 (1980).

V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
[CrossRef]

1978

V. M. Baev, T. P. Belikova, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).

1972

T. W. Hänsh, A. L. Schawlow, P. E. Toschek, “Ultrasensitive response of a CW dye laser to selective extinction,” IEEE J. Quantum Electron. QE-8, 802–804 (1972).
[CrossRef]

1971

1970

L. A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification line,” JETP Lett. 12, 43–45 (1970).

1958

P. Fellgett, “Theory of multiplex interferometric spectrometry,” J. Phys. Radium 19, 187–191 (1958).
[CrossRef]

Alfano, R. R.

Antonov, E. N.

E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plankhotnik, “Dependence of the sensitivity of intracavity laser spectrometer on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

Atkinson, G. H.

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38–1.55µm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993).
[CrossRef]

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–388 (1990).
[CrossRef]

Baev, V. M.

V. M. Baev, T. Latz, P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

V. M. Baev, G. Gaida, H. Schroder, P. E. Toschek, “Quantum fluctuations of multi-mode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
[CrossRef]

V. M. Baev, T. P. Belikova, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).

Bass, A. M.

Belikova, T. P.

V. M. Baev, T. P. Belikova, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).

Bermejo, D.

A. del Olmo, C. Domingo, J. M. Orza, D. Bermejo, “FT intracavity laser spectroscopy: the B-X transition of Cl2,” J. Mol. Spectrosc. 145, 323–330 (1991).
[CrossRef]

Biggs, P.

P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A step-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
[CrossRef]

Braun, W.

Browell, E. V.

P. L. Ponsardin, E. V. Browell, “Measurements of H216O line strengths and air-induced broadenings and shifts in the 815-nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997).
[CrossRef] [PubMed]

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Campargue, A.

A. Campargue, F. Stoeckel, M. Chenevier, “High-sensitivity intracavity laser spectroscopy—applications to the study of overtone transitions in the visible range,” Spectrochim. Acta Rev. 13, 69–88 (1990).

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Charvat, A.

Chenevier, M.

A. Campargue, F. Stoeckel, M. Chenevier, “High-sensitivity intracavity laser spectroscopy—applications to the study of overtone transitions in the visible range,” Spectrochim. Acta Rev. 13, 69–88 (1990).

M. A. Mélières, M. Chenevier, F. Stoeckel, “Intensity measurements and self-broadening coefficients in the γ band of O2 at 628 nm using intracavity laser-absorption spectroscopy (ICLAS),” J. Quant. Spectrosc. Radiat. Transfer 33, 337 (1985).
[CrossRef]

F. Stoeckel, M. A. Mélières, M. Chenevier, “Quantitative measurement of very weak H2O absorption lines by time-resolved intracavity laser spectroscopy,” J. Chem. Phys. 76, 2191–2196 (1982).
[CrossRef]

Chevenier, M.

M. Chevenier, M. A. Mélières, F. Stoeckel, “Intracavity absorption line shapes and quantitative measurements on O2,” Opt. Commun. 45, 385 (1983).
[CrossRef]

Churilov, S. S.

L. A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification line,” JETP Lett. 12, 43–45 (1970).

Coleman, I.

A. S. Zachor, I. Coleman, W. G. Mankin, “Effect of drive nonlinearities in Fourier spectroscopy,” in Spectroscopic Techniques, G. A. Vanasse, ed. (Academic, San Diego, Calif., 1981), Vol. 2, Chap. 3, pp. 1–62.

Cvijin, P. V.

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38–1.55µm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993).
[CrossRef]

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–388 (1990).
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

de Haseth, J. A.

P. R. Griffiths, J. A. de Haseth, “Chemical analysis,” in Fourier Transform Infrared Spectrometry, P. J. Elving, J. D. Winefordner, eds. (Wiley, New York, 1986), p. 15.

del Olmo, A.

A. del Olmo, C. Domingo, J. M. Orza, D. Bermejo, “FT intracavity laser spectroscopy: the B-X transition of Cl2,” J. Mol. Spectrosc. 145, 323–330 (1991).
[CrossRef]

C. Domingo, A. del Olmo, R. Escribano, J. M. Orza, “Fourier transform intracavity laser absorption spectra of 6ν1 band of CDH3,” J. Chem. Phys. 96, 972–975 (1991).
[CrossRef]

Domingo, C.

C. Domingo, A. del Olmo, R. Escribano, J. M. Orza, “Fourier transform intracavity laser absorption spectra of 6ν1 band of CDH3,” J. Chem. Phys. 96, 972–975 (1991).
[CrossRef]

A. del Olmo, C. Domingo, J. M. Orza, D. Bermejo, “FT intracavity laser spectroscopy: the B-X transition of Cl2,” J. Mol. Spectrosc. 145, 323–330 (1991).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Escribano, R.

C. Domingo, A. del Olmo, R. Escribano, J. M. Orza, “Fourier transform intracavity laser absorption spectra of 6ν1 band of CDH3,” J. Chem. Phys. 96, 972–975 (1991).
[CrossRef]

Fellgett, P.

P. Fellgett, “Theory of multiplex interferometric spectrometry,” J. Phys. Radium 19, 187–191 (1958).
[CrossRef]

Flaud, J. M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Frolov, M. P.

M. P. Frolov, Y. P. Podmarkov, “Intracavity laser spectroscopy with a Co:MgF2 laser,” Opt. Commun. 155, 313–316 (1988).
[CrossRef]

Gaida, G.

V. M. Baev, G. Gaida, H. Schroder, P. E. Toschek, “Quantum fluctuations of multi-mode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
[CrossRef]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gayen, S. K.

Gilmore, D. A.

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38–1.55µm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993).
[CrossRef]

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–388 (1990).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Griffiths, P. R.

P. R. Griffiths, J. A. de Haseth, “Chemical analysis,” in Fourier Transform Infrared Spectrometry, P. J. Elving, J. D. Winefordner, eds. (Wiley, New York, 1986), p. 15.

Guelachvili, G.

G. Guelachvili, “Distortions in Fourier spectra and diagnosis,” in Spectroscopic Techniques, G. A. Vanasse, ed. (Academic, San Diego, Calif., 1981), Vol. 2, Chap. 3, pp. 127–160.

Hancock, G.

P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A step-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
[CrossRef]

Hänsh, T. W.

T. W. Hänsh, A. L. Schawlow, P. E. Toschek, “Ultrasensitive response of a CW dye laser to selective extinction,” IEEE J. Quantum Electron. QE-8, 802–804 (1972).
[CrossRef]

Harris, G. W.

Heard, D.

P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A step-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
[CrossRef]

Hu, S. M.

H. Lin, X. G. Wang, S. F. Yang, S. M. Hu, Q. S. Zhu, “Study of an intracavity laser absorption spectrometer incorporated with the Fourier transform spectrometer,” Chin. J. Lasers 25, 1008–1012 (1998).

Johnson, T.

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kachanov, A.

Kachanov, A. A.

A. A. Kachanov, V. R. Mironenko, I. K. Pashkovich, “Quantum threshold of the sensitivity of an intracavity traveling-wave laser spectrometer,” Sov. J. Quantum Electron. 19, 95–98 (1989).
[CrossRef]

E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plankhotnik, “Dependence of the sensitivity of intracavity laser spectrometer on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

Kalmar, B.

B. Kalmar, J. J. O’Brien, “Quantitative intracavity laser spectroscopy measurements with a Ti:sapphire laser: absorption intensities for water vapor lines in the 790–800 nm region,” J. Mol. Spectrosc. 192, 386–393 (1998).
[CrossRef] [PubMed]

Keller, R. A.

Kovalenko, S. A.

S. A. Kovalenko, “Quantum intensity fluctuations in multi-mode cw lasers and maximum sensitivity of intracavity laser spectroscopy,” Sov. J. Quantum Electron. 11, 759–762 (1981).
[CrossRef]

Kruus, E. J.

J. J. Sloan, E. J. Kruus, “Time-resolved Fourier transform spectroscopy,” in Time Resolved Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1989), pp. 219–253.

Kurilo, M. J.

Latz, T.

V. M. Baev, T. Latz, P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

Lin, H.

H. Lin, X. G. Wang, S. F. Yang, S. M. Hu, Q. S. Zhu, “Study of an intracavity laser absorption spectrometer incorporated with the Fourier transform spectrometer,” Chin. J. Lasers 25, 1008–1012 (1998).

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mankin, W. G.

A. S. Zachor, I. Coleman, W. G. Mankin, “Effect of drive nonlinearities in Fourier spectroscopy,” in Spectroscopic Techniques, G. A. Vanasse, ed. (Academic, San Diego, Calif., 1981), Vol. 2, Chap. 3, pp. 1–62.

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mélières, M. A.

M. A. Mélières, M. Chenevier, F. Stoeckel, “Intensity measurements and self-broadening coefficients in the γ band of O2 at 628 nm using intracavity laser-absorption spectroscopy (ICLAS),” J. Quant. Spectrosc. Radiat. Transfer 33, 337 (1985).
[CrossRef]

M. Chevenier, M. A. Mélières, F. Stoeckel, “Intracavity absorption line shapes and quantitative measurements on O2,” Opt. Commun. 45, 385 (1983).
[CrossRef]

F. Stoeckel, M. A. Mélières, M. Chenevier, “Quantitative measurement of very weak H2O absorption lines by time-resolved intracavity laser spectroscopy,” J. Chem. Phys. 76, 2191–2196 (1982).
[CrossRef]

Mironenko, V. R.

A. A. Kachanov, V. R. Mironenko, I. K. Pashkovich, “Quantum threshold of the sensitivity of an intracavity traveling-wave laser spectrometer,” Sov. J. Quantum Electron. 19, 95–98 (1989).
[CrossRef]

E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plankhotnik, “Dependence of the sensitivity of intracavity laser spectrometer on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
[CrossRef]

V. R. Mironenko, V. I. Yudson, “Quantum statistics of multimode lasing and noise in intracavity laser spectroscopy,” Sov. Phys. JETP 52, 594–602 (1980).

Moulton, P. F.

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

O’Brien, J. J.

B. Kalmar, J. J. O’Brien, “Quantitative intracavity laser spectroscopy measurements with a Ti:sapphire laser: absorption intensities for water vapor lines in the 790–800 nm region,” J. Mol. Spectrosc. 192, 386–393 (1998).
[CrossRef] [PubMed]

Orza, J. M.

C. Domingo, A. del Olmo, R. Escribano, J. M. Orza, “Fourier transform intracavity laser absorption spectra of 6ν1 band of CDH3,” J. Chem. Phys. 96, 972–975 (1991).
[CrossRef]

A. del Olmo, C. Domingo, J. M. Orza, D. Bermejo, “FT intracavity laser spectroscopy: the B-X transition of Cl2,” J. Mol. Spectrosc. 145, 323–330 (1991).
[CrossRef]

Pakhomycheva, L. A.

L. A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification line,” JETP Lett. 12, 43–45 (1970).

Pashkovich, I. K.

A. A. Kachanov, V. R. Mironenko, I. K. Pashkovich, “Quantum threshold of the sensitivity of an intracavity traveling-wave laser spectrometer,” Sov. J. Quantum Electron. 19, 95–98 (1989).
[CrossRef]

Peal, R. E.

Peale, R. E.

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Peterson, A. C.

Petricevic, V.

Plankhotnik, T. V.

E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plankhotnik, “Dependence of the sensitivity of intracavity laser spectrometer on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

Podmarkov, Y. P.

M. P. Frolov, Y. P. Podmarkov, “Intracavity laser spectroscopy with a Co:MgF2 laser,” Opt. Commun. 155, 313–316 (1988).
[CrossRef]

Ponsardin, P. L.

P. L. Ponsardin, E. V. Browell, “Measurements of H216O line strengths and air-induced broadenings and shifts in the 815-nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997).
[CrossRef] [PubMed]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Schawlow, A. L.

T. W. Hänsh, A. L. Schawlow, P. E. Toschek, “Ultrasensitive response of a CW dye laser to selective extinction,” IEEE J. Quantum Electron. QE-8, 802–804 (1972).
[CrossRef]

Schroder, H.

V. M. Baev, G. Gaida, H. Schroder, P. E. Toschek, “Quantum fluctuations of multi-mode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Sloan, J. J.

J. J. Sloan, E. J. Kruus, “Time-resolved Fourier transform spectroscopy,” in Time Resolved Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1989), pp. 219–253.

Stoeckel, F.

A. Kachanov, A. Charvat, F. Stoeckel, “Intracavity laser spectroscopy with vibronic solid-state lasers. II. Influence of the nonlinear mode coupling on the maximum sensitivity of a Ti:sapphire laser,” J. Opt. Soc. Am. B 12, 970–979 (1995).
[CrossRef]

A. Kachanov, A. Charvat, F. Stoeckel, “Intracavity laser spectroscopy with vibronic solid-state lasers. I. Spectrotemporal transient behavior of a Ti:sapphire laser,” J. Opt. Soc. Am. B 11, 2412–2421 (1994).
[CrossRef]

A. Campargue, F. Stoeckel, M. Chenevier, “High-sensitivity intracavity laser spectroscopy—applications to the study of overtone transitions in the visible range,” Spectrochim. Acta Rev. 13, 69–88 (1990).

M. A. Mélières, M. Chenevier, F. Stoeckel, “Intensity measurements and self-broadening coefficients in the γ band of O2 at 628 nm using intracavity laser-absorption spectroscopy (ICLAS),” J. Quant. Spectrosc. Radiat. Transfer 33, 337 (1985).
[CrossRef]

M. Chevenier, M. A. Mélières, F. Stoeckel, “Intracavity absorption line shapes and quantitative measurements on O2,” Opt. Commun. 45, 385 (1983).
[CrossRef]

F. Stoeckel, M. A. Mélières, M. Chenevier, “Quantitative measurement of very weak H2O absorption lines by time-resolved intracavity laser spectroscopy,” J. Chem. Phys. 76, 2191–2196 (1982).
[CrossRef]

Strong, K.

Suchkov, A. F.

V. M. Baev, T. P. Belikova, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).

L. A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification line,” JETP Lett. 12, 43–45 (1970).

Sviridenkov, E. A.

V. M. Baev, T. P. Belikova, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).

L. A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification line,” JETP Lett. 12, 43–45 (1970).

Titova, L. V.

L. A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification line,” JETP Lett. 12, 43–45 (1970).

Toschek, P. E.

V. M. Baev, T. Latz, P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

V. M. Baev, G. Gaida, H. Schroder, P. E. Toschek, “Quantum fluctuations of multi-mode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
[CrossRef]

T. W. Hänsh, A. L. Schawlow, P. E. Toschek, “Ultrasensitive response of a CW dye laser to selective extinction,” IEEE J. Quantum Electron. QE-8, 802–804 (1972).
[CrossRef]

Toth, R. A.

R. A. Toth, “Measurement of H216O line positions and strengths: 11610 to 12861 cm-1,” J. Mol. Spectrosc. 116, 176–183 (1994).
[CrossRef]

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Wang, X. G.

H. Lin, X. G. Wang, S. F. Yang, S. M. Hu, Q. S. Zhu, “Study of an intracavity laser absorption spectrometer incorporated with the Fourier transform spectrometer,” Chin. J. Lasers 25, 1008–1012 (1998).

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Wayne, R. P.

P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A step-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
[CrossRef]

Weidner, H.

Welford, D.

Yang, S. F.

H. Lin, X. G. Wang, S. F. Yang, S. M. Hu, Q. S. Zhu, “Study of an intracavity laser absorption spectrometer incorporated with the Fourier transform spectrometer,” Chin. J. Lasers 25, 1008–1012 (1998).

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Yudson, V. I.

V. R. Mironenko, V. I. Yudson, “Quantum statistics of multimode lasing and noise in intracavity laser spectroscopy,” Sov. Phys. JETP 52, 594–602 (1980).

V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
[CrossRef]

Zachor, A. S.

A. S. Zachor, I. Coleman, W. G. Mankin, “Effect of drive nonlinearities in Fourier spectroscopy,” in Spectroscopic Techniques, G. A. Vanasse, ed. (Academic, San Diego, Calif., 1981), Vol. 2, Chap. 3, pp. 1–62.

Zhu, Q. S.

H. Lin, X. G. Wang, S. F. Yang, S. M. Hu, Q. S. Zhu, “Study of an intracavity laser absorption spectrometer incorporated with the Fourier transform spectrometer,” Chin. J. Lasers 25, 1008–1012 (1998).

Appl. Opt.

Appl. Phys. B

V. M. Baev, T. Latz, P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

Appl. Spectrosc.

Chin. J. Lasers

H. Lin, X. G. Wang, S. F. Yang, S. M. Hu, Q. S. Zhu, “Study of an intracavity laser absorption spectrometer incorporated with the Fourier transform spectrometer,” Chin. J. Lasers 25, 1008–1012 (1998).

IEEE J. Quantum Electron.

T. W. Hänsh, A. L. Schawlow, P. E. Toschek, “Ultrasensitive response of a CW dye laser to selective extinction,” IEEE J. Quantum Electron. QE-8, 802–804 (1972).
[CrossRef]

J. Chem. Phys.

C. Domingo, A. del Olmo, R. Escribano, J. M. Orza, “Fourier transform intracavity laser absorption spectra of 6ν1 band of CDH3,” J. Chem. Phys. 96, 972–975 (1991).
[CrossRef]

F. Stoeckel, M. A. Mélières, M. Chenevier, “Quantitative measurement of very weak H2O absorption lines by time-resolved intracavity laser spectroscopy,” J. Chem. Phys. 76, 2191–2196 (1982).
[CrossRef]

J. Mol. Spectrosc.

P. L. Ponsardin, E. V. Browell, “Measurements of H216O line strengths and air-induced broadenings and shifts in the 815-nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997).
[CrossRef] [PubMed]

R. A. Toth, “Measurement of H216O line positions and strengths: 11610 to 12861 cm-1,” J. Mol. Spectrosc. 116, 176–183 (1994).
[CrossRef]

B. Kalmar, J. J. O’Brien, “Quantitative intracavity laser spectroscopy measurements with a Ti:sapphire laser: absorption intensities for water vapor lines in the 790–800 nm region,” J. Mol. Spectrosc. 192, 386–393 (1998).
[CrossRef] [PubMed]

A. del Olmo, C. Domingo, J. M. Orza, D. Bermejo, “FT intracavity laser spectroscopy: the B-X transition of Cl2,” J. Mol. Spectrosc. 145, 323–330 (1991).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Phys. Radium

P. Fellgett, “Theory of multiplex interferometric spectrometry,” J. Phys. Radium 19, 187–191 (1958).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

M. A. Mélières, M. Chenevier, F. Stoeckel, “Intensity measurements and self-broadening coefficients in the γ band of O2 at 628 nm using intracavity laser-absorption spectroscopy (ICLAS),” J. Quant. Spectrosc. Radiat. Transfer 33, 337 (1985).
[CrossRef]

JETP Lett.

L. A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification line,” JETP Lett. 12, 43–45 (1970).

Meas. Sci. Technol.

P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A step-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
[CrossRef]

Opt. Commun.

M. P. Frolov, Y. P. Podmarkov, “Intracavity laser spectroscopy with a Co:MgF2 laser,” Opt. Commun. 155, 313–316 (1988).
[CrossRef]

V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
[CrossRef]

V. M. Baev, G. Gaida, H. Schroder, P. E. Toschek, “Quantum fluctuations of multi-mode laser oscillator,” Opt. Commun. 38, 309–313 (1981).
[CrossRef]

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–388 (1990).
[CrossRef]

M. Chevenier, M. A. Mélières, F. Stoeckel, “Intracavity absorption line shapes and quantitative measurements on O2,” Opt. Commun. 45, 385 (1983).
[CrossRef]

E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plankhotnik, “Dependence of the sensitivity of intracavity laser spectrometer on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38–1.55µm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993).
[CrossRef]

Opt. Lett.

Sov. J. Quantum Electron.

A. A. Kachanov, V. R. Mironenko, I. K. Pashkovich, “Quantum threshold of the sensitivity of an intracavity traveling-wave laser spectrometer,” Sov. J. Quantum Electron. 19, 95–98 (1989).
[CrossRef]

S. A. Kovalenko, “Quantum intensity fluctuations in multi-mode cw lasers and maximum sensitivity of intracavity laser spectroscopy,” Sov. J. Quantum Electron. 11, 759–762 (1981).
[CrossRef]

Sov. Phys. JETP

V. R. Mironenko, V. I. Yudson, “Quantum statistics of multimode lasing and noise in intracavity laser spectroscopy,” Sov. Phys. JETP 52, 594–602 (1980).

V. M. Baev, T. P. Belikova, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).

Spectrochim. Acta Rev.

A. Campargue, F. Stoeckel, M. Chenevier, “High-sensitivity intracavity laser spectroscopy—applications to the study of overtone transitions in the visible range,” Spectrochim. Acta Rev. 13, 69–88 (1990).

Other

The function form for Norton–Beer–Weak is W(Δ) = c0 + c1[1 - (Δ/Δm)2] + c2{[1 - (Δ/Δm)2]}2, where c0 = 0.34809, c1 = -0.08758, and c2 = 0.70348. Δ is the OPD value, and Δm is the maximal OPD.

G. Guelachvili, “Distortions in Fourier spectra and diagnosis,” in Spectroscopic Techniques, G. A. Vanasse, ed. (Academic, San Diego, Calif., 1981), Vol. 2, Chap. 3, pp. 127–160.

The function form for the Blackman–Harris three term is W(Δ) = a0 + a1 cos(2πΔ/Δm) + a2 cos(4πΔ/Δm), where a0 = 0.42323, a1 = 0.49755, and a2 = 0.07922.

A. S. Zachor, I. Coleman, W. G. Mankin, “Effect of drive nonlinearities in Fourier spectroscopy,” in Spectroscopic Techniques, G. A. Vanasse, ed. (Academic, San Diego, Calif., 1981), Vol. 2, Chap. 3, pp. 1–62.

J. J. Sloan, E. J. Kruus, “Time-resolved Fourier transform spectroscopy,” in Time Resolved Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1989), pp. 219–253.

P. R. Griffiths, J. A. de Haseth, “Chemical analysis,” in Fourier Transform Infrared Spectrometry, P. J. Elving, J. D. Winefordner, eds. (Wiley, New York, 1986), p. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the FT-ICLAS installation. FM, folding mirror; OC, output coupler; HR, high-reflection mirror; P, prism; PC, personal computer. The thin and the thick lines represent the laser beam and the electronic signals, respectively. The doubled lines denote the cables connecting the spectrometers and the computers.

Fig. 2
Fig. 2

Diagram showing the synchronization between triggering and sampling. The generation time t g is measured as the sampling delay with respect to the scanning modulation signal. The laser emission signal was recorded by a digital oscilloscope.

Fig. 3
Fig. 3

Absorption spectrum of atmospheric water vapor recorded by FT-ICLAS with electronic filters.

Fig. 4
Fig. 4

Relation of the experimental integrated intensity versus the calculated absorption intensity from the HITRAN line strength for the 13 selected lines.

Fig. 5
Fig. 5

Upper panel, normalized spectrum from Fig. 3. The three lines marked with an asterisk do not belong to water transitions. Lower panel, simulation result with line intensities from the HITRAN 96 database.

Fig. 6
Fig. 6

Time-resolved spectra recorded by FT-ICLAS at the generation time t g of 35, 45, 75, 105 and 135 µs.

Fig. 7
Fig. 7

Logarithm of the envelope width (FWHM) versus the generation time t g for the time-resolved spectra.

Fig. 8
Fig. 8

Linear evolution of the integrated intensity over the line with the generation time t g .

Tables (1)

Tables Icon

Table 1 Comparison of the Experimental Results for 13 Isolated Water Vapor Lines with the Corresponding HITRAN Dataa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Iνq, tg=ItγtgπΓ21/2 exp-νq-νo2Γ2 γtg×exp-ανqctg.
Pqmq, tg=1Mqtgexp-mq/Mqtg.
JΔ, tg=qMqtg1+cos2πνqΔ2.
σJΔ, tg2=qMqtg1+cos2πνqΔ22.
σJ(Δ)2= M02q=1N1+cos(2πνqΔ)22,=M02q=1N3+4 cos2πνqΔ+cos4πνqΔ8=M0238 N.
Iν, tg=I0ν, tgexp-KNϕνctgfapp
lnI0filν, tgIfilν, tgdν=KNctgeff
lnI0ν, tgIν, tgdν=KNctg.

Metrics