Abstract

A chemical cleaving method to improve the resolution of relief modulation in dichromated gelatin is presented. The process (which uses hydroxylamine) yields higher relief resolution and better profile fidelity than a process that uses the enzyme trypsin because it has many fewer cleaving sites. Experiments prove that relief modulation can produce a resolution of as much as 500 lines/mm. With a projection exposure system, a microprism array with a 30-µm-wide, 0.8-µm-high cell is fabricated by this method. A method for forming a continuous relief on dichromated gelatin is also discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Meyerhofer, “Spatial resolution of relief holograms in dichromated gelatin,” Appl. Opt. 10, 416–421 (1971).
    [CrossRef] [PubMed]
  2. L. Pirodda, M. Moriconi, “An effective processing agent for dichromated gelatin,” Opt. Commun. 65, 7–10 (1988).
    [CrossRef]
  3. T. Ahlhorn, K. Gnadig, H. Kreye, “Transferring relief holograms formed in silver halide emulsions into nickel foils for embossing,” in Proceedings of SUR/FIN’93 (American Electroplaters and Surface Finishers Society, Orlando, Fla., 1993), pp. 21–24.
  4. T. Jiyue, X. Ping, G. Lurong, “Enzyme-etching-developing technique for fabricating continuous relief microoptical elements,” Chin. J. Lasers A 24, 302–306 (1997).
  5. S. Calixto, M. S. Scholl, “Relief optical microelements fabricated with dichromated gelatin,” Appl. Opt. 36, 2101–2106 (1997).
    [CrossRef] [PubMed]
  6. A. G. Ward, A. Courts, The Science and Technology of Gelatin (Academic, London, 1977), pp. viii, 73–100.
  7. L. Stryer, Biochemistry, 3rd ed. (Freeman, New York, 1988), p. 56.

1997 (2)

T. Jiyue, X. Ping, G. Lurong, “Enzyme-etching-developing technique for fabricating continuous relief microoptical elements,” Chin. J. Lasers A 24, 302–306 (1997).

S. Calixto, M. S. Scholl, “Relief optical microelements fabricated with dichromated gelatin,” Appl. Opt. 36, 2101–2106 (1997).
[CrossRef] [PubMed]

1988 (1)

L. Pirodda, M. Moriconi, “An effective processing agent for dichromated gelatin,” Opt. Commun. 65, 7–10 (1988).
[CrossRef]

1971 (1)

Ahlhorn, T.

T. Ahlhorn, K. Gnadig, H. Kreye, “Transferring relief holograms formed in silver halide emulsions into nickel foils for embossing,” in Proceedings of SUR/FIN’93 (American Electroplaters and Surface Finishers Society, Orlando, Fla., 1993), pp. 21–24.

Calixto, S.

Courts, A.

A. G. Ward, A. Courts, The Science and Technology of Gelatin (Academic, London, 1977), pp. viii, 73–100.

Gnadig, K.

T. Ahlhorn, K. Gnadig, H. Kreye, “Transferring relief holograms formed in silver halide emulsions into nickel foils for embossing,” in Proceedings of SUR/FIN’93 (American Electroplaters and Surface Finishers Society, Orlando, Fla., 1993), pp. 21–24.

Jiyue, T.

T. Jiyue, X. Ping, G. Lurong, “Enzyme-etching-developing technique for fabricating continuous relief microoptical elements,” Chin. J. Lasers A 24, 302–306 (1997).

Kreye, H.

T. Ahlhorn, K. Gnadig, H. Kreye, “Transferring relief holograms formed in silver halide emulsions into nickel foils for embossing,” in Proceedings of SUR/FIN’93 (American Electroplaters and Surface Finishers Society, Orlando, Fla., 1993), pp. 21–24.

Lurong, G.

T. Jiyue, X. Ping, G. Lurong, “Enzyme-etching-developing technique for fabricating continuous relief microoptical elements,” Chin. J. Lasers A 24, 302–306 (1997).

Meyerhofer, D.

Moriconi, M.

L. Pirodda, M. Moriconi, “An effective processing agent for dichromated gelatin,” Opt. Commun. 65, 7–10 (1988).
[CrossRef]

Ping, X.

T. Jiyue, X. Ping, G. Lurong, “Enzyme-etching-developing technique for fabricating continuous relief microoptical elements,” Chin. J. Lasers A 24, 302–306 (1997).

Pirodda, L.

L. Pirodda, M. Moriconi, “An effective processing agent for dichromated gelatin,” Opt. Commun. 65, 7–10 (1988).
[CrossRef]

Scholl, M. S.

Stryer, L.

L. Stryer, Biochemistry, 3rd ed. (Freeman, New York, 1988), p. 56.

Ward, A. G.

A. G. Ward, A. Courts, The Science and Technology of Gelatin (Academic, London, 1977), pp. viii, 73–100.

Appl. Opt. (2)

Chin. J. Lasers A (1)

T. Jiyue, X. Ping, G. Lurong, “Enzyme-etching-developing technique for fabricating continuous relief microoptical elements,” Chin. J. Lasers A 24, 302–306 (1997).

Opt. Commun. (1)

L. Pirodda, M. Moriconi, “An effective processing agent for dichromated gelatin,” Opt. Commun. 65, 7–10 (1988).
[CrossRef]

Other (3)

T. Ahlhorn, K. Gnadig, H. Kreye, “Transferring relief holograms formed in silver halide emulsions into nickel foils for embossing,” in Proceedings of SUR/FIN’93 (American Electroplaters and Surface Finishers Society, Orlando, Fla., 1993), pp. 21–24.

A. G. Ward, A. Courts, The Science and Technology of Gelatin (Academic, London, 1977), pp. viii, 73–100.

L. Stryer, Biochemistry, 3rd ed. (Freeman, New York, 1988), p. 56.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of cleavage for trypsin, where R and R1 denote amino acid residues in polypeptide.

Fig. 2
Fig. 2

(a) Microphotograph of a binary gelatin grating with 53-µm spacing. (b) Interferogram of the binary grating. The black spots in the photograph are due to mildew on the lens of our microscope.

Fig. 3
Fig. 3

(a) Surface profile of a 200-line/mm gelatin grating measured with an Alpha-Step 500 profilometer. The height of the relief structure can be obtained directly from the location of both L and R. (b) Interferogram, (c) microphotograph, and (d) scanning-electron microscope photograph of the 200-line/mm grating.

Fig. 4
Fig. 4

(a) Microphotograph of a 500-line/mm gelatin grating. (b) Interferogram of the 500-line/mm gelatin. Because of limited field of vision in the interference microscope, the fringes in marginal areas are distorted.

Fig. 5
Fig. 5

Optical configuration for fabricating a micro-optical element with continuous relief.

Fig. 6
Fig. 6

(a) Microphotograph of the surfaces of the microprisms. (b) Interferogram of the prisms, which gave information on the height of the microprisms.

Tables (2)

Tables Icon

Table 1 Cleavage of Polypeptides

Tables Icon

Table 2 Processing Steps for Developing DCG Platesa

Metrics