Abstract

Polarization-spectroscopy (PS) line shapes and signal intensities are measured in well-characterized hydrogen–air flames operated over a wide range of equivalence ratios. We use both low (perturbative) and high (saturating) pump beam intensities in the counterpropagating pump–probe geometry. The effects of saturation on the line-center signal intensity and the resonance linewidth are investigated. The PS signal intensities are used to measure relative OH number densities in a series of near-adiabatic flames at equivalence ratios (ϕ) ranging from 0.5 to 1.5. The use of saturating pump intensities minimizes the effect of pump beam absorption, providing more accurate number density measurements. When calibrated to the calculated OH concentration in the ϕ = 0.6 flame, the saturated PS number density measurements probing the P 1(2) transition are in excellent agreement with OH absorption measurements, equilibrium calculations of OH number density, and previous saturated degenerate four-wave mixing OH number density measurements.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, The Netherlands, 1996).
  2. K. Nyholm, R. Maier, C. G. Aminoff, M. Kaivola, “Detection of OH in flames by using polarization spectroscopy,” Appl. Opt. 32, 919–924 (1993).
    [CrossRef] [PubMed]
  3. K. Nyholm, R. Fritzon, M. Aldén, “Two-dimensional imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18, 1672–1674 (1993).
    [CrossRef] [PubMed]
  4. K. Nyholm, “Measurements of OH rotational temperature in flames by using polarization spectroscopy,” Opt. Commun. 111, 66–70 (1994).
    [CrossRef]
  5. K. Nyholm, R. Fritzon, M. Aldén, “Single-pulse two-dimensional imaging in flames by degenerate four-wave mixing and polarization spectroscopy,” Appl. Phys. B 59, 37–43 (1994).
    [CrossRef]
  6. M. J. New, P. Ewart, A. Dreizler, T. Dreier, “Multiplex polarization spectroscopy of OH for flame thermometry,” Appl. Phys. B 65, 633–637 (1997).
    [CrossRef]
  7. K. Nyholm, R. Fritzon, N. Georgiev, M. Aldén, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995).
    [CrossRef]
  8. K. Nyholm, M. Kaivola, C. G. Aminoff, “Polarization spectroscopy applied to C2 detection in a flame,” Appl. Phys. B 60, 5–10 (1995).
    [CrossRef]
  9. A. Dreizler, T. Dreier, J. Wolfrum, “Polarization spectroscopic measurement of the NH (A3Π– X3Σ) transition in an ammonia/oxygen flame,” J. Mol. Struct. 349, 285–288 (1995).
    [CrossRef]
  10. C. F. Kaminski, B. Löfstedt, R. Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).
    [CrossRef]
  11. R. E. Teets, F. V. Kowalski, W. T. Hill, N. Carlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977).
    [CrossRef]
  12. W. Demtröder, Laser Spectroscopy (Springer-Verlag, New York, 1996), pp. 454–466.
  13. T. A. Reichardt, R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
    [CrossRef]
  14. T. A. Reichardt, W. C. Giancola, C. M. Shappert, R. P. Lucht, “Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements,” Appl. Opt. 38, 6951–6961 (1999).
    [CrossRef]
  15. R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
    [CrossRef]
  16. K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1998).
    [CrossRef]
  17. G. Zizak, J. Lanauze, J. D. Winefordner, “Cross-beam polarization in flames with a pulsed dye laser,” Appl. Opt. 25, 3242–3246 (1986).
    [CrossRef] [PubMed]
  18. W. C. Giancola, T. A. Reichardt, R. P. Lucht, “Multi-axial-mode laser effects in polarization spectroscopy,” submitted to J. Opt. Soc. Am. B.
  19. S. Gordon, B. J. McBride, “Computer program for calculation of chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman–Jouguet detonations,” (NASA, Lewis Research Center, Cleveland, Ohio, 1976).
  20. K. E. Bertagnolli, R. P. Lucht, “Temperature profile measurements in stagnation-flow diamond-forming flames using hydrogen CARS spectroscopy,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1825–1833.
    [CrossRef]
  21. R. D. Hancock, F. R. Schauer, R. P. Lucht, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997).
    [CrossRef] [PubMed]
  22. F. Grisch, B. Attal-Trétout, P. Bouchardy, V. R. Katta, W. M. Roquemore, “A vortex-flame interaction study using four-wave mixing techniques,” J. Nonlinear Opt. Phys. Mater. 5, 505–526 (1996).
    [CrossRef]
  23. A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett. 296, 151–158 (1998).
    [CrossRef]
  24. J. Ropcke, L. Mechold, M. Kaning, W. Y. Fan, P. B. Davies, “Tunable diode laser diagnostic studies of H2-Ar-O2 in microwave plasmas containing methane or methanol,” Plasma Chem. Plasma Process. 19, 395–419 (1999).
    [CrossRef]

1999 (2)

T. A. Reichardt, W. C. Giancola, C. M. Shappert, R. P. Lucht, “Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements,” Appl. Opt. 38, 6951–6961 (1999).
[CrossRef]

J. Ropcke, L. Mechold, M. Kaning, W. Y. Fan, P. B. Davies, “Tunable diode laser diagnostic studies of H2-Ar-O2 in microwave plasmas containing methane or methanol,” Plasma Chem. Plasma Process. 19, 395–419 (1999).
[CrossRef]

1998 (3)

A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett. 296, 151–158 (1998).
[CrossRef]

T. A. Reichardt, R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
[CrossRef]

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1998).
[CrossRef]

1997 (3)

R. D. Hancock, F. R. Schauer, R. P. Lucht, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997).
[CrossRef] [PubMed]

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

M. J. New, P. Ewart, A. Dreizler, T. Dreier, “Multiplex polarization spectroscopy of OH for flame thermometry,” Appl. Phys. B 65, 633–637 (1997).
[CrossRef]

1996 (2)

C. F. Kaminski, B. Löfstedt, R. Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).
[CrossRef]

F. Grisch, B. Attal-Trétout, P. Bouchardy, V. R. Katta, W. M. Roquemore, “A vortex-flame interaction study using four-wave mixing techniques,” J. Nonlinear Opt. Phys. Mater. 5, 505–526 (1996).
[CrossRef]

1995 (3)

K. Nyholm, R. Fritzon, N. Georgiev, M. Aldén, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995).
[CrossRef]

K. Nyholm, M. Kaivola, C. G. Aminoff, “Polarization spectroscopy applied to C2 detection in a flame,” Appl. Phys. B 60, 5–10 (1995).
[CrossRef]

A. Dreizler, T. Dreier, J. Wolfrum, “Polarization spectroscopic measurement of the NH (A3Π– X3Σ) transition in an ammonia/oxygen flame,” J. Mol. Struct. 349, 285–288 (1995).
[CrossRef]

1994 (2)

K. Nyholm, “Measurements of OH rotational temperature in flames by using polarization spectroscopy,” Opt. Commun. 111, 66–70 (1994).
[CrossRef]

K. Nyholm, R. Fritzon, M. Aldén, “Single-pulse two-dimensional imaging in flames by degenerate four-wave mixing and polarization spectroscopy,” Appl. Phys. B 59, 37–43 (1994).
[CrossRef]

1993 (2)

1986 (1)

Aldén, M.

C. F. Kaminski, B. Löfstedt, R. Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).
[CrossRef]

K. Nyholm, R. Fritzon, N. Georgiev, M. Aldén, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995).
[CrossRef]

K. Nyholm, R. Fritzon, M. Aldén, “Single-pulse two-dimensional imaging in flames by degenerate four-wave mixing and polarization spectroscopy,” Appl. Phys. B 59, 37–43 (1994).
[CrossRef]

K. Nyholm, R. Fritzon, M. Aldén, “Two-dimensional imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18, 1672–1674 (1993).
[CrossRef] [PubMed]

Aminoff, C. G.

K. Nyholm, M. Kaivola, C. G. Aminoff, “Polarization spectroscopy applied to C2 detection in a flame,” Appl. Phys. B 60, 5–10 (1995).
[CrossRef]

K. Nyholm, R. Maier, C. G. Aminoff, M. Kaivola, “Detection of OH in flames by using polarization spectroscopy,” Appl. Opt. 32, 919–924 (1993).
[CrossRef] [PubMed]

Attal-Trétout, B.

F. Grisch, B. Attal-Trétout, P. Bouchardy, V. R. Katta, W. M. Roquemore, “A vortex-flame interaction study using four-wave mixing techniques,” J. Nonlinear Opt. Phys. Mater. 5, 505–526 (1996).
[CrossRef]

Bertagnolli, K. E.

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1998).
[CrossRef]

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

K. E. Bertagnolli, R. P. Lucht, “Temperature profile measurements in stagnation-flow diamond-forming flames using hydrogen CARS spectroscopy,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1825–1833.
[CrossRef]

Bouchardy, P.

F. Grisch, B. Attal-Trétout, P. Bouchardy, V. R. Katta, W. M. Roquemore, “A vortex-flame interaction study using four-wave mixing techniques,” J. Nonlinear Opt. Phys. Mater. 5, 505–526 (1996).
[CrossRef]

Bui-Pham, M. N.

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1998).
[CrossRef]

Carlson, N.

R. E. Teets, F. V. Kowalski, W. T. Hill, N. Carlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977).
[CrossRef]

Davies, P. B.

J. Ropcke, L. Mechold, M. Kaning, W. Y. Fan, P. B. Davies, “Tunable diode laser diagnostic studies of H2-Ar-O2 in microwave plasmas containing methane or methanol,” Plasma Chem. Plasma Process. 19, 395–419 (1999).
[CrossRef]

Demtröder, W.

W. Demtröder, Laser Spectroscopy (Springer-Verlag, New York, 1996), pp. 454–466.

Dreier, T.

M. J. New, P. Ewart, A. Dreizler, T. Dreier, “Multiplex polarization spectroscopy of OH for flame thermometry,” Appl. Phys. B 65, 633–637 (1997).
[CrossRef]

A. Dreizler, T. Dreier, J. Wolfrum, “Polarization spectroscopic measurement of the NH (A3Π– X3Σ) transition in an ammonia/oxygen flame,” J. Mol. Struct. 349, 285–288 (1995).
[CrossRef]

Dreizler, A.

M. J. New, P. Ewart, A. Dreizler, T. Dreier, “Multiplex polarization spectroscopy of OH for flame thermometry,” Appl. Phys. B 65, 633–637 (1997).
[CrossRef]

A. Dreizler, T. Dreier, J. Wolfrum, “Polarization spectroscopic measurement of the NH (A3Π– X3Σ) transition in an ammonia/oxygen flame,” J. Mol. Struct. 349, 285–288 (1995).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, The Netherlands, 1996).

Ewart, P.

M. J. New, P. Ewart, A. Dreizler, T. Dreier, “Multiplex polarization spectroscopy of OH for flame thermometry,” Appl. Phys. B 65, 633–637 (1997).
[CrossRef]

Fan, W. Y.

J. Ropcke, L. Mechold, M. Kaning, W. Y. Fan, P. B. Davies, “Tunable diode laser diagnostic studies of H2-Ar-O2 in microwave plasmas containing methane or methanol,” Plasma Chem. Plasma Process. 19, 395–419 (1999).
[CrossRef]

Farrow, R. L.

Fritzon, R.

C. F. Kaminski, B. Löfstedt, R. Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).
[CrossRef]

K. Nyholm, R. Fritzon, N. Georgiev, M. Aldén, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995).
[CrossRef]

K. Nyholm, R. Fritzon, M. Aldén, “Single-pulse two-dimensional imaging in flames by degenerate four-wave mixing and polarization spectroscopy,” Appl. Phys. B 59, 37–43 (1994).
[CrossRef]

K. Nyholm, R. Fritzon, M. Aldén, “Two-dimensional imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18, 1672–1674 (1993).
[CrossRef] [PubMed]

Georgiev, N.

K. Nyholm, R. Fritzon, N. Georgiev, M. Aldén, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995).
[CrossRef]

Giancola, W. C.

Gordon, S.

S. Gordon, B. J. McBride, “Computer program for calculation of chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman–Jouguet detonations,” (NASA, Lewis Research Center, Cleveland, Ohio, 1976).

Grisch, F.

F. Grisch, B. Attal-Trétout, P. Bouchardy, V. R. Katta, W. M. Roquemore, “A vortex-flame interaction study using four-wave mixing techniques,” J. Nonlinear Opt. Phys. Mater. 5, 505–526 (1996).
[CrossRef]

Hancock, R. D.

R. D. Hancock, F. R. Schauer, R. P. Lucht, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997).
[CrossRef] [PubMed]

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Hänsch, T. W.

R. E. Teets, F. V. Kowalski, W. T. Hill, N. Carlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977).
[CrossRef]

Hill, W. T.

R. E. Teets, F. V. Kowalski, W. T. Hill, N. Carlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977).
[CrossRef]

Kaivola, M.

K. Nyholm, M. Kaivola, C. G. Aminoff, “Polarization spectroscopy applied to C2 detection in a flame,” Appl. Phys. B 60, 5–10 (1995).
[CrossRef]

K. Nyholm, R. Maier, C. G. Aminoff, M. Kaivola, “Detection of OH in flames by using polarization spectroscopy,” Appl. Opt. 32, 919–924 (1993).
[CrossRef] [PubMed]

Kaminski, C. F.

C. F. Kaminski, B. Löfstedt, R. Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).
[CrossRef]

Kaning, M.

J. Ropcke, L. Mechold, M. Kaning, W. Y. Fan, P. B. Davies, “Tunable diode laser diagnostic studies of H2-Ar-O2 in microwave plasmas containing methane or methanol,” Plasma Chem. Plasma Process. 19, 395–419 (1999).
[CrossRef]

Katta, V. R.

F. Grisch, B. Attal-Trétout, P. Bouchardy, V. R. Katta, W. M. Roquemore, “A vortex-flame interaction study using four-wave mixing techniques,” J. Nonlinear Opt. Phys. Mater. 5, 505–526 (1996).
[CrossRef]

Kowalski, F. V.

R. E. Teets, F. V. Kowalski, W. T. Hill, N. Carlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977).
[CrossRef]

Lanauze, J.

Löfstedt, B.

C. F. Kaminski, B. Löfstedt, R. Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).
[CrossRef]

Lucht, R. P.

T. A. Reichardt, W. C. Giancola, C. M. Shappert, R. P. Lucht, “Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements,” Appl. Opt. 38, 6951–6961 (1999).
[CrossRef]

T. A. Reichardt, R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
[CrossRef]

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1998).
[CrossRef]

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

R. D. Hancock, F. R. Schauer, R. P. Lucht, R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997).
[CrossRef] [PubMed]

W. C. Giancola, T. A. Reichardt, R. P. Lucht, “Multi-axial-mode laser effects in polarization spectroscopy,” submitted to J. Opt. Soc. Am. B.

K. E. Bertagnolli, R. P. Lucht, “Temperature profile measurements in stagnation-flow diamond-forming flames using hydrogen CARS spectroscopy,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1825–1833.
[CrossRef]

Maier, R.

McBride, B. J.

S. Gordon, B. J. McBride, “Computer program for calculation of chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman–Jouguet detonations,” (NASA, Lewis Research Center, Cleveland, Ohio, 1976).

McIlroy, A.

A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett. 296, 151–158 (1998).
[CrossRef]

Mechold, L.

J. Ropcke, L. Mechold, M. Kaning, W. Y. Fan, P. B. Davies, “Tunable diode laser diagnostic studies of H2-Ar-O2 in microwave plasmas containing methane or methanol,” Plasma Chem. Plasma Process. 19, 395–419 (1999).
[CrossRef]

New, M. J.

M. J. New, P. Ewart, A. Dreizler, T. Dreier, “Multiplex polarization spectroscopy of OH for flame thermometry,” Appl. Phys. B 65, 633–637 (1997).
[CrossRef]

Nyholm, K.

K. Nyholm, R. Fritzon, N. Georgiev, M. Aldén, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995).
[CrossRef]

K. Nyholm, M. Kaivola, C. G. Aminoff, “Polarization spectroscopy applied to C2 detection in a flame,” Appl. Phys. B 60, 5–10 (1995).
[CrossRef]

K. Nyholm, “Measurements of OH rotational temperature in flames by using polarization spectroscopy,” Opt. Commun. 111, 66–70 (1994).
[CrossRef]

K. Nyholm, R. Fritzon, M. Aldén, “Single-pulse two-dimensional imaging in flames by degenerate four-wave mixing and polarization spectroscopy,” Appl. Phys. B 59, 37–43 (1994).
[CrossRef]

K. Nyholm, R. Fritzon, M. Aldén, “Two-dimensional imaging of OH in flames by use of polarization spectroscopy,” Opt. Lett. 18, 1672–1674 (1993).
[CrossRef] [PubMed]

K. Nyholm, R. Maier, C. G. Aminoff, M. Kaivola, “Detection of OH in flames by using polarization spectroscopy,” Appl. Opt. 32, 919–924 (1993).
[CrossRef] [PubMed]

Reichardt, T. A.

T. A. Reichardt, W. C. Giancola, C. M. Shappert, R. P. Lucht, “Experimental investigation of saturated degenerate four-wave mixing for quantitative concentration measurements,” Appl. Opt. 38, 6951–6961 (1999).
[CrossRef]

T. A. Reichardt, R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
[CrossRef]

W. C. Giancola, T. A. Reichardt, R. P. Lucht, “Multi-axial-mode laser effects in polarization spectroscopy,” submitted to J. Opt. Soc. Am. B.

Ropcke, J.

J. Ropcke, L. Mechold, M. Kaning, W. Y. Fan, P. B. Davies, “Tunable diode laser diagnostic studies of H2-Ar-O2 in microwave plasmas containing methane or methanol,” Plasma Chem. Plasma Process. 19, 395–419 (1999).
[CrossRef]

Roquemore, W. M.

F. Grisch, B. Attal-Trétout, P. Bouchardy, V. R. Katta, W. M. Roquemore, “A vortex-flame interaction study using four-wave mixing techniques,” J. Nonlinear Opt. Phys. Mater. 5, 505–526 (1996).
[CrossRef]

Schauer, F. R.

Shappert, C. M.

Teets, R. E.

R. E. Teets, F. V. Kowalski, W. T. Hill, N. Carlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977).
[CrossRef]

Winefordner, J. D.

Wolfrum, J.

A. Dreizler, T. Dreier, J. Wolfrum, “Polarization spectroscopic measurement of the NH (A3Π– X3Σ) transition in an ammonia/oxygen flame,” J. Mol. Struct. 349, 285–288 (1995).
[CrossRef]

Zizak, G.

Appl. Opt. (4)

Appl. Phys. B (3)

K. Nyholm, R. Fritzon, M. Aldén, “Single-pulse two-dimensional imaging in flames by degenerate four-wave mixing and polarization spectroscopy,” Appl. Phys. B 59, 37–43 (1994).
[CrossRef]

M. J. New, P. Ewart, A. Dreizler, T. Dreier, “Multiplex polarization spectroscopy of OH for flame thermometry,” Appl. Phys. B 65, 633–637 (1997).
[CrossRef]

K. Nyholm, M. Kaivola, C. G. Aminoff, “Polarization spectroscopy applied to C2 detection in a flame,” Appl. Phys. B 60, 5–10 (1995).
[CrossRef]

Chem. Phys. Lett. (1)

A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett. 296, 151–158 (1998).
[CrossRef]

Combust. Flame (1)

R. D. Hancock, K. E. Bertagnolli, R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

J. Appl. Phys. (1)

K. E. Bertagnolli, R. P. Lucht, M. N. Bui-Pham, “Atomic hydrogen concentration profile measurements in stagnation-flow diamond-forming flames using three-photon excitation laser-induced fluorescence,” J. Appl. Phys. 83, 2315–2326 (1998).
[CrossRef]

J. Chem. Phys. (1)

T. A. Reichardt, R. P. Lucht, “Theoretical calculation of line shapes and saturation effects in polarization spectroscopy,” J. Chem. Phys. 109, 5830–5843 (1998).
[CrossRef]

J. Mol. Struct. (1)

A. Dreizler, T. Dreier, J. Wolfrum, “Polarization spectroscopic measurement of the NH (A3Π– X3Σ) transition in an ammonia/oxygen flame,” J. Mol. Struct. 349, 285–288 (1995).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

F. Grisch, B. Attal-Trétout, P. Bouchardy, V. R. Katta, W. M. Roquemore, “A vortex-flame interaction study using four-wave mixing techniques,” J. Nonlinear Opt. Phys. Mater. 5, 505–526 (1996).
[CrossRef]

Opt. Commun. (3)

C. F. Kaminski, B. Löfstedt, R. Fritzon, M. Aldén, “Two-photon polarization spectroscopy and (2 + 3)-photon laser induced fluorescence of N2,” Opt. Commun. 129, 38–43 (1996).
[CrossRef]

K. Nyholm, “Measurements of OH rotational temperature in flames by using polarization spectroscopy,” Opt. Commun. 111, 66–70 (1994).
[CrossRef]

K. Nyholm, R. Fritzon, N. Georgiev, M. Aldén, “Two-photon induced polarization spectroscopy applied to the detection of NH3 and CO molecules in cold flows and flames,” Opt. Commun. 114, 76–82 (1995).
[CrossRef]

Opt. Lett. (1)

Plasma Chem. Plasma Process. (1)

J. Ropcke, L. Mechold, M. Kaning, W. Y. Fan, P. B. Davies, “Tunable diode laser diagnostic studies of H2-Ar-O2 in microwave plasmas containing methane or methanol,” Plasma Chem. Plasma Process. 19, 395–419 (1999).
[CrossRef]

Other (6)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon & Breach, Amsterdam, The Netherlands, 1996).

R. E. Teets, F. V. Kowalski, W. T. Hill, N. Carlson, T. W. Hänsch, “Laser polarization spectroscopy,” in Advances in Laser Spectroscopy I, A. H. Zewail, ed., Proc. SPIE113, 80–87 (1977).
[CrossRef]

W. Demtröder, Laser Spectroscopy (Springer-Verlag, New York, 1996), pp. 454–466.

W. C. Giancola, T. A. Reichardt, R. P. Lucht, “Multi-axial-mode laser effects in polarization spectroscopy,” submitted to J. Opt. Soc. Am. B.

S. Gordon, B. J. McBride, “Computer program for calculation of chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman–Jouguet detonations,” (NASA, Lewis Research Center, Cleveland, Ohio, 1976).

K. E. Bertagnolli, R. P. Lucht, “Temperature profile measurements in stagnation-flow diamond-forming flames using hydrogen CARS spectroscopy,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1825–1833.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of PS experiment. J-meter, joulemeter; fs plate, fused-silica plate; GP, Glan polarizer; bd, beam dump; nd, neutral density filter; ap, aperture; sf, spectral filter; λ/4, quarter-wave plate.

Fig. 2
Fig. 2

PS saturation curve of the P 1(2) transition for the ϕ = 0.9 flame.

Fig. 3
Fig. 3

Unfocused and focused PS line shapes compared with the absorption line shape for the P 1(2) transition in the ϕ = 0.7 flame. The unfocused pump intensity was 1 × 1011 W/m2, and the focused pump intensity was 2 × 1013 W/m2. The FWHM of the unsaturated PS line shape is 0.35 cm-1, and the FWHM of the saturated PS line shape is 0.50 cm-1.

Fig. 4
Fig. 4

Comparison of (a) the unfocused and (b) the focused PS line shapes displayed in Fig. 3 with DNI calculations of the PS line shapes. The points represent the experimental data, and the solid curves are the results of DNI calculations. The pump intensities used for the calculations were 7 × 1010 W/m2 for the unfocused beams and 2 × 1013 W/m2 for the focused beams. These values are within experimental uncertainty of the measured pump intensities for the unfocused beams and the focused beams, 1 × 1011 W/m2 and 2 × 1013 W/m2, respectively.

Fig. 5
Fig. 5

Measurements of OH number density as a function of equivalence ratio for (a) unfocused beams and (b) focused beams probing the P 1(2) transition. The number densities calculated from the equilibrium code and the experimental absorption data are included for comparison.

Fig. 6
Fig. 6

Measurements of OH number density as a function of equivalence ratio for (a) unfocused beams and (b) focused beams probing the Q 1(8) transition. The number densities calculated from the equilibrium code are included for comparison.

Fig. 7
Fig. 7

Measurements of the line-center absorptivity as a function of equivalence ratio for the P 1(2) and the Q 1(8) transitions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Isig,unsaturating1/2  Ilaser3/2 (1/ΔωD) (1/ΔωC)2
Isig,saturating1/2  Ilaser1/21/ΔωD1/ΔωC<1/2

Metrics