Abstract

We report our investigation of the mechanism that is responsible for the optical limiting behavior in multiwalled carbon nanotubes. We conducted energy-dependent transmission measurements, picosecond time-resolved pump–probe experiment, and nonlinear scattering experiments at 532-nm wavelength on multiwalled carbon nanotube suspension. For comparison, C60–toluene solutions and carbon black suspensions were also studied in the same experiments. The similarities that we observed between the multiwalled carbon nanotubes and carbon black suspension suggest that nonlinear scattering, which is known to be responsible for the limiting action in carbon black suspension, should play an important role in the limiting effect in multiwalled carbon nanotubes.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature (London) 354, 56–58 (1991).
    [CrossRef]
  2. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996).
  3. M. Endo, S. Iijima, M. S. Dresselhaus, Carbon Nanotubes (Pergamon, Oxford, 1996).
  4. T. W. Ebbesen, Carbon Nanotubes: Preparation and Properties (CRC Press, Boca Raton, Fla., 1997).
  5. X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
    [CrossRef]
  6. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
    [CrossRef]
  7. L. Vivien, E. Anglaret, D. Richl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999).
    [CrossRef]
  8. R. Crane, K. Lewis, E. W. Van Stryland, M. Khoshnevisa, eds., Materials for Optical Limiting I (Materials Research Society, Warrendale, Pa., 1994); P. Hood, R. Pachter, K. Lewis, J. W. Perry, D. Hagan, R. Sutherland, eds., Materials for Optical Limiting II (Materials Research Society, Warrendale, Pa., 1997), Vol. 374.
  9. L. W. Tutt, A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature (London) 356, 225–226 (1992).
    [CrossRef]
  10. V. V. Golovlev, W. R. Garrett, C. H. Chen, “Reverse saturable absorption of C60 in liquids irradiated by picosecond and nanosecond laser pulses,” J. Opt. Soc. Am. B 13, 2801–2806 (1996), and references therein.
  11. D. G. McLean, R. L. Sutherland, M. C. Brant, D. M. Brandelik, P. A. Fleitz, T. Pottenger, “Nonlinear absorption study of a C60–toluene solution,” Opt. Lett. 18, 858–860 (1993).
    [CrossRef]
  12. S. Guha, W. T. Roberts, B. H. Ahn, “Nonlinear optical limiting of C60, platinum poly-yne, and tetrabenzporphyrin in the near infrared,” Appl. Phys. Lett. 68, 3686–3688 (1996).
    [CrossRef]
  13. S. R. Mishra, H. S. Rawat, S. C. Mehendale, “Reverse saturable absorption and optical limiting in C60 solution in the near-infrared,” Appl. Phys. Lett. 71, 46–48 (1997).
    [CrossRef]
  14. K. Mansour, M. J. Soileau, E. W. Van Stryland, “Nonlinear optical properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
    [CrossRef]
  15. K. M. Nashold, D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995).
    [CrossRef]
  16. R. Goedert, R. Becker, A. Clements, T. Whittaker, “Time-resolved shadowgraphic imaging of the response of dilute suspensions to laser pulses,” J. Opt. Soc. Am. B 15, 1442–1462 (1998).
    [CrossRef]
  17. O. Durand, V. Grolier-Mazza, R. Frey, “Picosecond-resolution study of nonlinear scattering in carbon black suspensions in water and ethanol,” Opt. Lett. 23, 1471–1473 (1998).
    [CrossRef]
  18. P. Chen, H. B. Zhang, G. D. Lin, Q. Hong, K. R. Tsai, “Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni–MgO catalyst,” Carbon 35, 1495–1501 (1997).
    [CrossRef]

1999 (2)

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

L. Vivien, E. Anglaret, D. Richl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999).
[CrossRef]

1998 (3)

1997 (2)

P. Chen, H. B. Zhang, G. D. Lin, Q. Hong, K. R. Tsai, “Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni–MgO catalyst,” Carbon 35, 1495–1501 (1997).
[CrossRef]

S. R. Mishra, H. S. Rawat, S. C. Mehendale, “Reverse saturable absorption and optical limiting in C60 solution in the near-infrared,” Appl. Phys. Lett. 71, 46–48 (1997).
[CrossRef]

1996 (2)

V. V. Golovlev, W. R. Garrett, C. H. Chen, “Reverse saturable absorption of C60 in liquids irradiated by picosecond and nanosecond laser pulses,” J. Opt. Soc. Am. B 13, 2801–2806 (1996), and references therein.

S. Guha, W. T. Roberts, B. H. Ahn, “Nonlinear optical limiting of C60, platinum poly-yne, and tetrabenzporphyrin in the near infrared,” Appl. Phys. Lett. 68, 3686–3688 (1996).
[CrossRef]

1995 (1)

1993 (1)

1992 (2)

K. Mansour, M. J. Soileau, E. W. Van Stryland, “Nonlinear optical properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
[CrossRef]

L. W. Tutt, A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature (London) 356, 225–226 (1992).
[CrossRef]

1991 (1)

S. Iijima, “Helical microtubules of graphitic carbon,” Nature (London) 354, 56–58 (1991).
[CrossRef]

Ahn, B. H.

S. Guha, W. T. Roberts, B. H. Ahn, “Nonlinear optical limiting of C60, platinum poly-yne, and tetrabenzporphyrin in the near infrared,” Appl. Phys. Lett. 68, 3686–3688 (1996).
[CrossRef]

Andrieux, M.

L. Vivien, E. Anglaret, D. Richl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999).
[CrossRef]

Anglaret, E.

L. Vivien, E. Anglaret, D. Richl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999).
[CrossRef]

Bacou, F.

L. Vivien, E. Anglaret, D. Richl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999).
[CrossRef]

Becker, R.

Bernier, P.

L. Vivien, E. Anglaret, D. Richl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999).
[CrossRef]

Brandelik, D. M.

Brant, M. C.

Brunet, M.

L. Vivien, E. Anglaret, D. Richl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999).
[CrossRef]

Chen, C. H.

Chen, P.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

P. Chen, H. B. Zhang, G. D. Lin, Q. Hong, K. R. Tsai, “Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni–MgO catalyst,” Carbon 35, 1495–1501 (1997).
[CrossRef]

Clements, A.

Dresselhaus, G.

M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996).

Dresselhaus, M. S.

M. Endo, S. Iijima, M. S. Dresselhaus, Carbon Nanotubes (Pergamon, Oxford, 1996).

M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996).

Durand, O.

Ebbesen, T. W.

T. W. Ebbesen, Carbon Nanotubes: Preparation and Properties (CRC Press, Boca Raton, Fla., 1997).

Eklund, P. C.

M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996).

Endo, M.

M. Endo, S. Iijima, M. S. Dresselhaus, Carbon Nanotubes (Pergamon, Oxford, 1996).

Fleitz, P. A.

Frey, R.

Garrett, W. R.

Goedert, R.

Golovlev, V. V.

Goze, C.

L. Vivien, E. Anglaret, D. Richl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999).
[CrossRef]

Grolier-Mazza, V.

Guha, S.

S. Guha, W. T. Roberts, B. H. Ahn, “Nonlinear optical limiting of C60, platinum poly-yne, and tetrabenzporphyrin in the near infrared,” Appl. Phys. Lett. 68, 3686–3688 (1996).
[CrossRef]

Hache, F.

L. Vivien, E. Anglaret, D. Richl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999).
[CrossRef]

Hong, Q.

P. Chen, H. B. Zhang, G. D. Lin, Q. Hong, K. R. Tsai, “Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni–MgO catalyst,” Carbon 35, 1495–1501 (1997).
[CrossRef]

Hor, T. S. A.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Iijima, S.

S. Iijima, “Helical microtubules of graphitic carbon,” Nature (London) 354, 56–58 (1991).
[CrossRef]

M. Endo, S. Iijima, M. S. Dresselhaus, Carbon Nanotubes (Pergamon, Oxford, 1996).

Ji, W.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Journet, C.

L. Vivien, E. Anglaret, D. Richl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999).
[CrossRef]

Kost, A.

L. W. Tutt, A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature (London) 356, 225–226 (1992).
[CrossRef]

Lafonta, F.

L. Vivien, E. Anglaret, D. Richl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999).
[CrossRef]

Lin, G. D.

P. Chen, H. B. Zhang, G. D. Lin, Q. Hong, K. R. Tsai, “Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni–MgO catalyst,” Carbon 35, 1495–1501 (1997).
[CrossRef]

Lin, J.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Mansour, K.

McLean, D. G.

Mehendale, S. C.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, “Reverse saturable absorption and optical limiting in C60 solution in the near-infrared,” Appl. Phys. Lett. 71, 46–48 (1997).
[CrossRef]

Mishra, S. R.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, “Reverse saturable absorption and optical limiting in C60 solution in the near-infrared,” Appl. Phys. Lett. 71, 46–48 (1997).
[CrossRef]

Nashold, K. M.

Pottenger, T.

Rawat, H. S.

S. R. Mishra, H. S. Rawat, S. C. Mehendale, “Reverse saturable absorption and optical limiting in C60 solution in the near-infrared,” Appl. Phys. Lett. 71, 46–48 (1997).
[CrossRef]

Richl, D.

L. Vivien, E. Anglaret, D. Richl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999).
[CrossRef]

Roberts, W. T.

S. Guha, W. T. Roberts, B. H. Ahn, “Nonlinear optical limiting of C60, platinum poly-yne, and tetrabenzporphyrin in the near infrared,” Appl. Phys. Lett. 68, 3686–3688 (1996).
[CrossRef]

Soileau, M. J.

Sun, X.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Sutherland, R. L.

Tan, K. L.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Tsai, K. R.

P. Chen, H. B. Zhang, G. D. Lin, Q. Hong, K. R. Tsai, “Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni–MgO catalyst,” Carbon 35, 1495–1501 (1997).
[CrossRef]

Tutt, L. W.

L. W. Tutt, A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature (London) 356, 225–226 (1992).
[CrossRef]

Van Stryland, E. W.

Vivien, L.

L. Vivien, E. Anglaret, D. Richl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999).
[CrossRef]

Walter, D. P.

Whittaker, T.

Wu, X.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Xu, G. Q.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Yu, R. Q.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Zhang, H. B.

P. Chen, H. B. Zhang, G. D. Lin, Q. Hong, K. R. Tsai, “Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni–MgO catalyst,” Carbon 35, 1495–1501 (1997).
[CrossRef]

Appl. Phys. Lett. (3)

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

S. Guha, W. T. Roberts, B. H. Ahn, “Nonlinear optical limiting of C60, platinum poly-yne, and tetrabenzporphyrin in the near infrared,” Appl. Phys. Lett. 68, 3686–3688 (1996).
[CrossRef]

S. R. Mishra, H. S. Rawat, S. C. Mehendale, “Reverse saturable absorption and optical limiting in C60 solution in the near-infrared,” Appl. Phys. Lett. 71, 46–48 (1997).
[CrossRef]

Carbon (1)

P. Chen, H. B. Zhang, G. D. Lin, Q. Hong, K. R. Tsai, “Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni–MgO catalyst,” Carbon 35, 1495–1501 (1997).
[CrossRef]

Chem. Phys. Lett. (1)

L. Vivien, E. Anglaret, D. Richl, F. Bacou, C. Journet, C. Goze, M. Andrieux, M. Brunet, F. Lafonta, P. Bernier, F. Hache, “Single-wall carbon nanotubes for optical limiting,” Chem. Phys. Lett. 307, 317–319 (1999).
[CrossRef]

J. Opt. Soc. Am. B (4)

Nature (London) (2)

L. W. Tutt, A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature (London) 356, 225–226 (1992).
[CrossRef]

S. Iijima, “Helical microtubules of graphitic carbon,” Nature (London) 354, 56–58 (1991).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Other (4)

R. Crane, K. Lewis, E. W. Van Stryland, M. Khoshnevisa, eds., Materials for Optical Limiting I (Materials Research Society, Warrendale, Pa., 1994); P. Hood, R. Pachter, K. Lewis, J. W. Perry, D. Hagan, R. Sutherland, eds., Materials for Optical Limiting II (Materials Research Society, Warrendale, Pa., 1997), Vol. 374.

M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1996).

M. Endo, S. Iijima, M. S. Dresselhaus, Carbon Nanotubes (Pergamon, Oxford, 1996).

T. W. Ebbesen, Carbon Nanotubes: Preparation and Properties (CRC Press, Boca Raton, Fla., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmitted electron microscope images of (a) the MWNT’s (low resolution), (b) carbon particles in the CBS (low resolution), (c) the MWNT’s (high resolution), (d) carbon particles in the CBS (high resolution).

Fig. 2
Fig. 2

Experimental setup for nonlinear scattering measurements with 7-ns laser pulses at 532 nm.

Fig. 3
Fig. 3

Nonlinear transmittance of the C60 solution (squares), CBS (triangles), and MWNT suspension (open circles) measured at 532 nm with (a) 7-ns and (b) 35-ps laser pulses.

Fig. 4
Fig. 4

Probe transmittance versus delay time recorded with the maximum delay of (a) 2 ns and (b) 7 ns. The solid circles, open circles, and solid triangles represent the data for the CBS, MWNT suspension, and C60 solution, respectively. The solid line represents the theoretical fit for C60.

Fig. 5
Fig. 5

Energy dependence of the scattered light in the MWNT sample and the CBS as measured with 532-nm, 7-ns laser pulses at a variety of input energies.

Metrics