Abstract

A new method to reduce photomultiplier tube detector signal-induced noise (SIN) in a lidar system is successfully demonstrated. A metal ring electrode placed external to the photomultiplier tube photocathode is pulsed during the intense near-field lidar return with a potential between 15 and 500 V, resulting in a significant reduction in SIN. The effect of the metal ring voltage on the decay time constant and the magnitude of a simulated lidar signal is presented. Optimal experimental conditions for the use of this device in lidar receivers, such that the lidar decay time constant is not affected, are determined. Mechanisms for this SIN suppression system are discussed in detail, and data were recorded to show that the voltage on the metal ring functions by altering the photomultiplier electron optics.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription