Abstract

The scanning near-field optical microscope (SNOM) has been tested experimentally for a wide variety of applications, but, to date, there has been little work done on the numerical or analytical modeling of the optical field as it propagates throughout the SNOM probe. Therefore, the fabrication on the probes relies more on trial and error than on clear design principles. An algorithm has been developed for the study and optimization of the geometry of SNOM probes fabricated by the heat-drawn and the one-step chemically etched methods. The algorithm uses the finite-difference beam propagation method (FD-BPM) to model the field evolution throughout the SNOM structure.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Saiki, K. Nishi, M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
    [CrossRef]
  2. G. Kaupp, A. Herrmann, “Positive submicron lithography using uncoated or far-field apertured SNOM tips on organic crystals,” Ultramicroscopy 71, 383–388 (1998).
    [CrossRef]
  3. S. Huntington, K. Nugent, A. Roberts, K. Lo, P. Mulvaney, “Field characterization for a D-shaped optical fiber using scanning near field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
    [CrossRef]
  4. T. Saiki, K. Nishi, M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
    [CrossRef]
  5. R. Schwabe, V. Gottschalch, F. Pietag, K. Unger, M. Ventra, A. Bitz, J. Staehli, “Ultrathin GaAs layers layers embedded in AlAs: the observation of intense short-wavelength emission,” Phys. Status Solidi A 164, 165–168 (1997).
    [CrossRef]
  6. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffractions barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
    [CrossRef] [PubMed]
  7. P. Hoffmann, B. Dutoit, R. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fibre tips,” Ultramicroscopy 61, 165–170 (1996).
    [CrossRef]
  8. M. Islam, A. Khao, A. Said, S. Mickel, C. Vail, “High efficiency and high-resolution fibre-optic probes for near field imaging and spectroscopy,” Appl. Phys. Lett. 71, 2886–2888 (1997).
    [CrossRef]
  9. G. Valaskovic, M. Holton, G. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1227 (1996).
    [CrossRef]
  10. L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E. 50, 4094–4106 (1994).
    [CrossRef]
  11. H. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  12. P. Diament, Wave Transmission and Fiber Optics (Macmillian, New York, 1990), pp. 223–229.
  13. L. Novotny, D. Pohl, B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995).
    [CrossRef] [PubMed]
  14. W. Synder, J. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 420–426.
    [CrossRef]
  15. J. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23, 993–94 (1987).
    [CrossRef]
  16. J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, F. Gonthier, “Tapered singlemode fibres and devices. 1. Adiabaticity criteria,” Proc. IEE 138, 222–229 (1991).

1998

T. Saiki, K. Nishi, M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

G. Kaupp, A. Herrmann, “Positive submicron lithography using uncoated or far-field apertured SNOM tips on organic crystals,” Ultramicroscopy 71, 383–388 (1998).
[CrossRef]

T. Saiki, K. Nishi, M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

1997

R. Schwabe, V. Gottschalch, F. Pietag, K. Unger, M. Ventra, A. Bitz, J. Staehli, “Ultrathin GaAs layers layers embedded in AlAs: the observation of intense short-wavelength emission,” Phys. Status Solidi A 164, 165–168 (1997).
[CrossRef]

S. Huntington, K. Nugent, A. Roberts, K. Lo, P. Mulvaney, “Field characterization for a D-shaped optical fiber using scanning near field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
[CrossRef]

M. Islam, A. Khao, A. Said, S. Mickel, C. Vail, “High efficiency and high-resolution fibre-optic probes for near field imaging and spectroscopy,” Appl. Phys. Lett. 71, 2886–2888 (1997).
[CrossRef]

1996

G. Valaskovic, M. Holton, G. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1227 (1996).
[CrossRef]

P. Hoffmann, B. Dutoit, R. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fibre tips,” Ultramicroscopy 61, 165–170 (1996).
[CrossRef]

1995

1994

L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E. 50, 4094–4106 (1994).
[CrossRef]

1991

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffractions barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, F. Gonthier, “Tapered singlemode fibres and devices. 1. Adiabaticity criteria,” Proc. IEE 138, 222–229 (1991).

1987

J. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23, 993–94 (1987).
[CrossRef]

1944

H. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Bethe, H.

H. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffractions barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Bitz, A.

R. Schwabe, V. Gottschalch, F. Pietag, K. Unger, M. Ventra, A. Bitz, J. Staehli, “Ultrathin GaAs layers layers embedded in AlAs: the observation of intense short-wavelength emission,” Phys. Status Solidi A 164, 165–168 (1997).
[CrossRef]

Black, R.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, F. Gonthier, “Tapered singlemode fibres and devices. 1. Adiabaticity criteria,” Proc. IEE 138, 222–229 (1991).

Diament, P.

P. Diament, Wave Transmission and Fiber Optics (Macmillian, New York, 1990), pp. 223–229.

Dutoit, B.

P. Hoffmann, B. Dutoit, R. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fibre tips,” Ultramicroscopy 61, 165–170 (1996).
[CrossRef]

Gonthier, F.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, F. Gonthier, “Tapered singlemode fibres and devices. 1. Adiabaticity criteria,” Proc. IEE 138, 222–229 (1991).

Gottschalch, V.

R. Schwabe, V. Gottschalch, F. Pietag, K. Unger, M. Ventra, A. Bitz, J. Staehli, “Ultrathin GaAs layers layers embedded in AlAs: the observation of intense short-wavelength emission,” Phys. Status Solidi A 164, 165–168 (1997).
[CrossRef]

Hafner, C.

L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E. 50, 4094–4106 (1994).
[CrossRef]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffractions barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Hecht, B.

Henry, W.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, F. Gonthier, “Tapered singlemode fibres and devices. 1. Adiabaticity criteria,” Proc. IEE 138, 222–229 (1991).

Herrmann, A.

G. Kaupp, A. Herrmann, “Positive submicron lithography using uncoated or far-field apertured SNOM tips on organic crystals,” Ultramicroscopy 71, 383–388 (1998).
[CrossRef]

Hoffmann, P.

P. Hoffmann, B. Dutoit, R. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fibre tips,” Ultramicroscopy 61, 165–170 (1996).
[CrossRef]

Holton, M.

Huntington, S.

S. Huntington, K. Nugent, A. Roberts, K. Lo, P. Mulvaney, “Field characterization for a D-shaped optical fiber using scanning near field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
[CrossRef]

Islam, M.

M. Islam, A. Khao, A. Said, S. Mickel, C. Vail, “High efficiency and high-resolution fibre-optic probes for near field imaging and spectroscopy,” Appl. Phys. Lett. 71, 2886–2888 (1997).
[CrossRef]

Kaupp, G.

G. Kaupp, A. Herrmann, “Positive submicron lithography using uncoated or far-field apertured SNOM tips on organic crystals,” Ultramicroscopy 71, 383–388 (1998).
[CrossRef]

Khao, A.

M. Islam, A. Khao, A. Said, S. Mickel, C. Vail, “High efficiency and high-resolution fibre-optic probes for near field imaging and spectroscopy,” Appl. Phys. Lett. 71, 2886–2888 (1997).
[CrossRef]

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffractions barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Lacroix, S.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, F. Gonthier, “Tapered singlemode fibres and devices. 1. Adiabaticity criteria,” Proc. IEE 138, 222–229 (1991).

Lo, K.

S. Huntington, K. Nugent, A. Roberts, K. Lo, P. Mulvaney, “Field characterization for a D-shaped optical fiber using scanning near field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
[CrossRef]

Love, J.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, F. Gonthier, “Tapered singlemode fibres and devices. 1. Adiabaticity criteria,” Proc. IEE 138, 222–229 (1991).

J. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23, 993–94 (1987).
[CrossRef]

W. Synder, J. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 420–426.
[CrossRef]

Mickel, S.

M. Islam, A. Khao, A. Said, S. Mickel, C. Vail, “High efficiency and high-resolution fibre-optic probes for near field imaging and spectroscopy,” Appl. Phys. Lett. 71, 2886–2888 (1997).
[CrossRef]

Morrison, G.

Mulvaney, P.

S. Huntington, K. Nugent, A. Roberts, K. Lo, P. Mulvaney, “Field characterization for a D-shaped optical fiber using scanning near field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
[CrossRef]

Nishi, K.

T. Saiki, K. Nishi, M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

T. Saiki, K. Nishi, M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

Novotny, L.

L. Novotny, D. Pohl, B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995).
[CrossRef] [PubMed]

L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E. 50, 4094–4106 (1994).
[CrossRef]

Nugent, K.

S. Huntington, K. Nugent, A. Roberts, K. Lo, P. Mulvaney, “Field characterization for a D-shaped optical fiber using scanning near field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
[CrossRef]

Ohtsu, M.

T. Saiki, K. Nishi, M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

T. Saiki, K. Nishi, M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

Pietag, F.

R. Schwabe, V. Gottschalch, F. Pietag, K. Unger, M. Ventra, A. Bitz, J. Staehli, “Ultrathin GaAs layers layers embedded in AlAs: the observation of intense short-wavelength emission,” Phys. Status Solidi A 164, 165–168 (1997).
[CrossRef]

Pohl, D.

Roberts, A.

S. Huntington, K. Nugent, A. Roberts, K. Lo, P. Mulvaney, “Field characterization for a D-shaped optical fiber using scanning near field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
[CrossRef]

Said, A.

M. Islam, A. Khao, A. Said, S. Mickel, C. Vail, “High efficiency and high-resolution fibre-optic probes for near field imaging and spectroscopy,” Appl. Phys. Lett. 71, 2886–2888 (1997).
[CrossRef]

Saiki, T.

T. Saiki, K. Nishi, M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

T. Saiki, K. Nishi, M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

Salathe, R.

P. Hoffmann, B. Dutoit, R. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fibre tips,” Ultramicroscopy 61, 165–170 (1996).
[CrossRef]

Schwabe, R.

R. Schwabe, V. Gottschalch, F. Pietag, K. Unger, M. Ventra, A. Bitz, J. Staehli, “Ultrathin GaAs layers layers embedded in AlAs: the observation of intense short-wavelength emission,” Phys. Status Solidi A 164, 165–168 (1997).
[CrossRef]

Staehli, J.

R. Schwabe, V. Gottschalch, F. Pietag, K. Unger, M. Ventra, A. Bitz, J. Staehli, “Ultrathin GaAs layers layers embedded in AlAs: the observation of intense short-wavelength emission,” Phys. Status Solidi A 164, 165–168 (1997).
[CrossRef]

Stewart, W.

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, F. Gonthier, “Tapered singlemode fibres and devices. 1. Adiabaticity criteria,” Proc. IEE 138, 222–229 (1991).

Synder, W.

W. Synder, J. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 420–426.
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffractions barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Unger, K.

R. Schwabe, V. Gottschalch, F. Pietag, K. Unger, M. Ventra, A. Bitz, J. Staehli, “Ultrathin GaAs layers layers embedded in AlAs: the observation of intense short-wavelength emission,” Phys. Status Solidi A 164, 165–168 (1997).
[CrossRef]

Vail, C.

M. Islam, A. Khao, A. Said, S. Mickel, C. Vail, “High efficiency and high-resolution fibre-optic probes for near field imaging and spectroscopy,” Appl. Phys. Lett. 71, 2886–2888 (1997).
[CrossRef]

Valaskovic, G.

Ventra, M.

R. Schwabe, V. Gottschalch, F. Pietag, K. Unger, M. Ventra, A. Bitz, J. Staehli, “Ultrathin GaAs layers layers embedded in AlAs: the observation of intense short-wavelength emission,” Phys. Status Solidi A 164, 165–168 (1997).
[CrossRef]

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffractions barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

M. Islam, A. Khao, A. Said, S. Mickel, C. Vail, “High efficiency and high-resolution fibre-optic probes for near field imaging and spectroscopy,” Appl. Phys. Lett. 71, 2886–2888 (1997).
[CrossRef]

Electron. Lett.

J. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23, 993–94 (1987).
[CrossRef]

J. Appl. Phys.

S. Huntington, K. Nugent, A. Roberts, K. Lo, P. Mulvaney, “Field characterization for a D-shaped optical fiber using scanning near field optical microscopy,” J. Appl. Phys. 82, 510–513 (1997).
[CrossRef]

Jpn. J. Appl. Phys.

T. Saiki, K. Nishi, M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

T. Saiki, K. Nishi, M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev.

H. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. E.

L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E. 50, 4094–4106 (1994).
[CrossRef]

Phys. Status Solidi A

R. Schwabe, V. Gottschalch, F. Pietag, K. Unger, M. Ventra, A. Bitz, J. Staehli, “Ultrathin GaAs layers layers embedded in AlAs: the observation of intense short-wavelength emission,” Phys. Status Solidi A 164, 165–168 (1997).
[CrossRef]

Proc. IEE

J. Love, W. Henry, W. Stewart, R. Black, S. Lacroix, F. Gonthier, “Tapered singlemode fibres and devices. 1. Adiabaticity criteria,” Proc. IEE 138, 222–229 (1991).

Science

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffractions barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Ultramicroscopy

P. Hoffmann, B. Dutoit, R. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fibre tips,” Ultramicroscopy 61, 165–170 (1996).
[CrossRef]

G. Kaupp, A. Herrmann, “Positive submicron lithography using uncoated or far-field apertured SNOM tips on organic crystals,” Ultramicroscopy 71, 383–388 (1998).
[CrossRef]

Other

P. Diament, Wave Transmission and Fiber Optics (Macmillian, New York, 1990), pp. 223–229.

W. Synder, J. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), pp. 420–426.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Basic schematic of the tip region of a SNOM probe. A silica probe tip is coated with a layer of metal (approximately 50–200 nm thick). A small section at the tip is uncoated to form a subwavelength aperture for transmitting and collecting light.

Fig. 2
Fig. 2

Schematic of three probe geometries (not to scale): (a) heat-drawn, (b) one-step chemical etching, (c) hybrid drawn–etched.

Fig. 3
Fig. 3

Power within the near-field probe versus distance from the probe tip for the case of a heat-drawn probe. The final TE is not zero as illustrated.

Fig. 4
Fig. 4

TE versus aperture diameter: asterisks, 500-µm taper; crosses, 1-mm taper; open circles, from Valaskovic et al.9

Fig. 5
Fig. 5

TE (transmission mode) versus cone half-angle. Solid curve, the chemically etched probe; dashed curve, the heat-drawn probe.

Fig. 6
Fig. 6

TE (collection mode) versus cone half-angle. Solid curve, the chemically etched probe; dashed curve, the heat-drawn probe.

Fig. 7
Fig. 7

Comparison of powers contained within heat-drawn and chemically etched probes for the case with a cone half-angle of 10 deg. Solid curve, the chemically etched probe; dashed curve, the heat-drawn probe.

Fig. 8
Fig. 8

Comparison of powers contained within heat-drawn and chemically etched probes for the case with a cone half-angle of 35 deg. Solid curve, the chemically etched probe; dashed curve, the heat-drawn probe.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2ikn0ψz=2ψr2+1rψr+k2n2r, z-n02ψ,

Metrics