Abstract

A novel ring resonator configuration with Bragg gratings is presented. The stability of this configuration is studied by a z-transform technique. A router design with a FWHM of 17 MHz, a -40-dB rejection ratio, and a 15-dB gain at the output port is reported. The influence of temperature and of fabrication tolerance on parameters of this router configuration implemented with fiber technology is reviewed. Deviations in design specification owing to parameter variations are studied and compensated for with a gain control of 2.4% in a specific design.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-L. Tsao, H.-W. Tsao, Y.-H. Lee, “Design of a self-routing frequency division multiple access (SR-FDMA) network using an optical ring filter with or without gain as a router,” J. Lightwave Technol. 13, 2168–2182 (1995).
    [CrossRef]
  2. C. Vázquez, F. Hernández-Gil, M. López-Amo, “Tunable ring resonator filter for OFDM transmission systems,” Microwave Opt. Technol. Lett. 8, 321–323 (1995).
    [CrossRef]
  3. Y. H. Chew, T. T. Tjhung, F. V. Chrys Mendis, “An optical filter of adjustable finesse using an amplified fiber ring resonator,” J. Lightwave Technol. 15, 364–370 (1997).
    [CrossRef]
  4. C. K. Madsen, “Efficient architectures for exactly realizing optical filters with optimum bandpass designs,” Photon. Technol. Lett. 10, 1136–1138 (1998).
    [CrossRef]
  5. K. Oda, S. Suzuki, H. Takahashi, H. Toba, “An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,” Photon. Technol. Lett. 6, 1031–1034 (1994).
    [CrossRef]
  6. S. Kim, B. Lee, “Recirculating fiber delay-line filter with a fiber Bragg grating,” Appl. Opt. 37, 5469–5471 (1998).
    [CrossRef]
  7. T. Kominato, Y. Hibino, K. Onose, “Silica-based finesse-variable ring resonator,” Photon. Technol. Lett. 5, 560–562 (1993).
    [CrossRef]
  8. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
    [CrossRef]
  9. H. Okamura, K. Iwatsuki, “A finesse-enhanced Er-doped-fiber ring resonator,” J. Lightwave Technol. 9, 1554–1560 (1991).
    [CrossRef]
  10. H. M. Stoll, “Optimally coupled GaAs-distributed Bragg reflection lasers,” IEEE Trans. Circuits Syst. CAS-26, 1065–1072 (1979).
    [CrossRef]
  11. A. A. Abramov, A. Hale, R. S. Windeler, T. A. Strasser, “Widely tunable long-period fiber gratings,” Electron. Lett. 35, 81–82 (1999).
    [CrossRef]
  12. J. Lauzon, S. Thibault, J. Martin, F. Ouellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett. 19, 2027–2029 (1994).
    [CrossRef] [PubMed]
  13. 1999 Catalog, E-TEK Dynamics, Inc., 1865 Lundy Avenue, San Jose, Calif. 95131; couplers and splitters, p. 84.
  14. M. Yamada, M. Shimizu, M. Horiguchi, M. Okayasu, “Temperature dependence of signal gain in Er3+-doped optical fiber amplifiers,” IEEE J. Quantum Electron. 28, 640–648 (1992).
    [CrossRef]
  15. M. J. O’Mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” J. Lightwave Technol. 6, 531–544 (1988).
    [CrossRef]

1999

A. A. Abramov, A. Hale, R. S. Windeler, T. A. Strasser, “Widely tunable long-period fiber gratings,” Electron. Lett. 35, 81–82 (1999).
[CrossRef]

1998

C. K. Madsen, “Efficient architectures for exactly realizing optical filters with optimum bandpass designs,” Photon. Technol. Lett. 10, 1136–1138 (1998).
[CrossRef]

S. Kim, B. Lee, “Recirculating fiber delay-line filter with a fiber Bragg grating,” Appl. Opt. 37, 5469–5471 (1998).
[CrossRef]

1997

Y. H. Chew, T. T. Tjhung, F. V. Chrys Mendis, “An optical filter of adjustable finesse using an amplified fiber ring resonator,” J. Lightwave Technol. 15, 364–370 (1997).
[CrossRef]

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
[CrossRef]

1995

S.-L. Tsao, H.-W. Tsao, Y.-H. Lee, “Design of a self-routing frequency division multiple access (SR-FDMA) network using an optical ring filter with or without gain as a router,” J. Lightwave Technol. 13, 2168–2182 (1995).
[CrossRef]

C. Vázquez, F. Hernández-Gil, M. López-Amo, “Tunable ring resonator filter for OFDM transmission systems,” Microwave Opt. Technol. Lett. 8, 321–323 (1995).
[CrossRef]

1994

K. Oda, S. Suzuki, H. Takahashi, H. Toba, “An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,” Photon. Technol. Lett. 6, 1031–1034 (1994).
[CrossRef]

J. Lauzon, S. Thibault, J. Martin, F. Ouellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett. 19, 2027–2029 (1994).
[CrossRef] [PubMed]

1993

T. Kominato, Y. Hibino, K. Onose, “Silica-based finesse-variable ring resonator,” Photon. Technol. Lett. 5, 560–562 (1993).
[CrossRef]

1992

M. Yamada, M. Shimizu, M. Horiguchi, M. Okayasu, “Temperature dependence of signal gain in Er3+-doped optical fiber amplifiers,” IEEE J. Quantum Electron. 28, 640–648 (1992).
[CrossRef]

1991

H. Okamura, K. Iwatsuki, “A finesse-enhanced Er-doped-fiber ring resonator,” J. Lightwave Technol. 9, 1554–1560 (1991).
[CrossRef]

1988

M. J. O’Mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” J. Lightwave Technol. 6, 531–544 (1988).
[CrossRef]

1979

H. M. Stoll, “Optimally coupled GaAs-distributed Bragg reflection lasers,” IEEE Trans. Circuits Syst. CAS-26, 1065–1072 (1979).
[CrossRef]

Abramov, A. A.

A. A. Abramov, A. Hale, R. S. Windeler, T. A. Strasser, “Widely tunable long-period fiber gratings,” Electron. Lett. 35, 81–82 (1999).
[CrossRef]

Chew, Y. H.

Y. H. Chew, T. T. Tjhung, F. V. Chrys Mendis, “An optical filter of adjustable finesse using an amplified fiber ring resonator,” J. Lightwave Technol. 15, 364–370 (1997).
[CrossRef]

Chrys Mendis, F. V.

Y. H. Chew, T. T. Tjhung, F. V. Chrys Mendis, “An optical filter of adjustable finesse using an amplified fiber ring resonator,” J. Lightwave Technol. 15, 364–370 (1997).
[CrossRef]

Giles, C. R.

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
[CrossRef]

Hale, A.

A. A. Abramov, A. Hale, R. S. Windeler, T. A. Strasser, “Widely tunable long-period fiber gratings,” Electron. Lett. 35, 81–82 (1999).
[CrossRef]

Hernández-Gil, F.

C. Vázquez, F. Hernández-Gil, M. López-Amo, “Tunable ring resonator filter for OFDM transmission systems,” Microwave Opt. Technol. Lett. 8, 321–323 (1995).
[CrossRef]

Hibino, Y.

T. Kominato, Y. Hibino, K. Onose, “Silica-based finesse-variable ring resonator,” Photon. Technol. Lett. 5, 560–562 (1993).
[CrossRef]

Horiguchi, M.

M. Yamada, M. Shimizu, M. Horiguchi, M. Okayasu, “Temperature dependence of signal gain in Er3+-doped optical fiber amplifiers,” IEEE J. Quantum Electron. 28, 640–648 (1992).
[CrossRef]

Iwatsuki, K.

H. Okamura, K. Iwatsuki, “A finesse-enhanced Er-doped-fiber ring resonator,” J. Lightwave Technol. 9, 1554–1560 (1991).
[CrossRef]

Kim, S.

Kominato, T.

T. Kominato, Y. Hibino, K. Onose, “Silica-based finesse-variable ring resonator,” Photon. Technol. Lett. 5, 560–562 (1993).
[CrossRef]

Lauzon, J.

Lee, B.

Lee, Y.-H.

S.-L. Tsao, H.-W. Tsao, Y.-H. Lee, “Design of a self-routing frequency division multiple access (SR-FDMA) network using an optical ring filter with or without gain as a router,” J. Lightwave Technol. 13, 2168–2182 (1995).
[CrossRef]

López-Amo, M.

C. Vázquez, F. Hernández-Gil, M. López-Amo, “Tunable ring resonator filter for OFDM transmission systems,” Microwave Opt. Technol. Lett. 8, 321–323 (1995).
[CrossRef]

Madsen, C. K.

C. K. Madsen, “Efficient architectures for exactly realizing optical filters with optimum bandpass designs,” Photon. Technol. Lett. 10, 1136–1138 (1998).
[CrossRef]

Martin, J.

O’Mahony, M. J.

M. J. O’Mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” J. Lightwave Technol. 6, 531–544 (1988).
[CrossRef]

Oda, K.

K. Oda, S. Suzuki, H. Takahashi, H. Toba, “An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,” Photon. Technol. Lett. 6, 1031–1034 (1994).
[CrossRef]

Okamura, H.

H. Okamura, K. Iwatsuki, “A finesse-enhanced Er-doped-fiber ring resonator,” J. Lightwave Technol. 9, 1554–1560 (1991).
[CrossRef]

Okayasu, M.

M. Yamada, M. Shimizu, M. Horiguchi, M. Okayasu, “Temperature dependence of signal gain in Er3+-doped optical fiber amplifiers,” IEEE J. Quantum Electron. 28, 640–648 (1992).
[CrossRef]

Onose, K.

T. Kominato, Y. Hibino, K. Onose, “Silica-based finesse-variable ring resonator,” Photon. Technol. Lett. 5, 560–562 (1993).
[CrossRef]

Ouellette, F.

Shimizu, M.

M. Yamada, M. Shimizu, M. Horiguchi, M. Okayasu, “Temperature dependence of signal gain in Er3+-doped optical fiber amplifiers,” IEEE J. Quantum Electron. 28, 640–648 (1992).
[CrossRef]

Stoll, H. M.

H. M. Stoll, “Optimally coupled GaAs-distributed Bragg reflection lasers,” IEEE Trans. Circuits Syst. CAS-26, 1065–1072 (1979).
[CrossRef]

Strasser, T. A.

A. A. Abramov, A. Hale, R. S. Windeler, T. A. Strasser, “Widely tunable long-period fiber gratings,” Electron. Lett. 35, 81–82 (1999).
[CrossRef]

Suzuki, S.

K. Oda, S. Suzuki, H. Takahashi, H. Toba, “An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,” Photon. Technol. Lett. 6, 1031–1034 (1994).
[CrossRef]

Takahashi, H.

K. Oda, S. Suzuki, H. Takahashi, H. Toba, “An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,” Photon. Technol. Lett. 6, 1031–1034 (1994).
[CrossRef]

Thibault, S.

Tjhung, T. T.

Y. H. Chew, T. T. Tjhung, F. V. Chrys Mendis, “An optical filter of adjustable finesse using an amplified fiber ring resonator,” J. Lightwave Technol. 15, 364–370 (1997).
[CrossRef]

Toba, H.

K. Oda, S. Suzuki, H. Takahashi, H. Toba, “An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,” Photon. Technol. Lett. 6, 1031–1034 (1994).
[CrossRef]

Tsao, H.-W.

S.-L. Tsao, H.-W. Tsao, Y.-H. Lee, “Design of a self-routing frequency division multiple access (SR-FDMA) network using an optical ring filter with or without gain as a router,” J. Lightwave Technol. 13, 2168–2182 (1995).
[CrossRef]

Tsao, S.-L.

S.-L. Tsao, H.-W. Tsao, Y.-H. Lee, “Design of a self-routing frequency division multiple access (SR-FDMA) network using an optical ring filter with or without gain as a router,” J. Lightwave Technol. 13, 2168–2182 (1995).
[CrossRef]

Vázquez, C.

C. Vázquez, F. Hernández-Gil, M. López-Amo, “Tunable ring resonator filter for OFDM transmission systems,” Microwave Opt. Technol. Lett. 8, 321–323 (1995).
[CrossRef]

Windeler, R. S.

A. A. Abramov, A. Hale, R. S. Windeler, T. A. Strasser, “Widely tunable long-period fiber gratings,” Electron. Lett. 35, 81–82 (1999).
[CrossRef]

Yamada, M.

M. Yamada, M. Shimizu, M. Horiguchi, M. Okayasu, “Temperature dependence of signal gain in Er3+-doped optical fiber amplifiers,” IEEE J. Quantum Electron. 28, 640–648 (1992).
[CrossRef]

Appl. Opt.

Electron. Lett.

A. A. Abramov, A. Hale, R. S. Windeler, T. A. Strasser, “Widely tunable long-period fiber gratings,” Electron. Lett. 35, 81–82 (1999).
[CrossRef]

IEEE J. Quantum Electron.

M. Yamada, M. Shimizu, M. Horiguchi, M. Okayasu, “Temperature dependence of signal gain in Er3+-doped optical fiber amplifiers,” IEEE J. Quantum Electron. 28, 640–648 (1992).
[CrossRef]

IEEE Trans. Circuits Syst.

H. M. Stoll, “Optimally coupled GaAs-distributed Bragg reflection lasers,” IEEE Trans. Circuits Syst. CAS-26, 1065–1072 (1979).
[CrossRef]

J. Lightwave Technol.

M. J. O’Mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” J. Lightwave Technol. 6, 531–544 (1988).
[CrossRef]

Y. H. Chew, T. T. Tjhung, F. V. Chrys Mendis, “An optical filter of adjustable finesse using an amplified fiber ring resonator,” J. Lightwave Technol. 15, 364–370 (1997).
[CrossRef]

S.-L. Tsao, H.-W. Tsao, Y.-H. Lee, “Design of a self-routing frequency division multiple access (SR-FDMA) network using an optical ring filter with or without gain as a router,” J. Lightwave Technol. 13, 2168–2182 (1995).
[CrossRef]

C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol. 15, 1391–1404 (1997).
[CrossRef]

H. Okamura, K. Iwatsuki, “A finesse-enhanced Er-doped-fiber ring resonator,” J. Lightwave Technol. 9, 1554–1560 (1991).
[CrossRef]

Microwave Opt. Technol. Lett.

C. Vázquez, F. Hernández-Gil, M. López-Amo, “Tunable ring resonator filter for OFDM transmission systems,” Microwave Opt. Technol. Lett. 8, 321–323 (1995).
[CrossRef]

Opt. Lett.

Photon. Technol. Lett.

C. K. Madsen, “Efficient architectures for exactly realizing optical filters with optimum bandpass designs,” Photon. Technol. Lett. 10, 1136–1138 (1998).
[CrossRef]

K. Oda, S. Suzuki, H. Takahashi, H. Toba, “An optical FDM distribution experiment using a high finesse waveguide-type double ring resonator,” Photon. Technol. Lett. 6, 1031–1034 (1994).
[CrossRef]

T. Kominato, Y. Hibino, K. Onose, “Silica-based finesse-variable ring resonator,” Photon. Technol. Lett. 5, 560–562 (1993).
[CrossRef]

Other

1999 Catalog, E-TEK Dynamics, Inc., 1865 Lundy Avenue, San Jose, Calif. 95131; couplers and splitters, p. 84.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Configuration of the RRGB. Abbreviations are defined in text.

Fig. 2
Fig. 2

Intensity transfer function F2, with a maximum value of Bragg grating reflectance of 0.65, K 2 = 0.5, and γ2 = 0.05.

Fig. 3
Fig. 3

Normalized intensity transfer functions: solid curve, Bragg grating; dotted curve, RR.

Fig. 4
Fig. 4

RRGB output power at port P3 (solid curves) and port P4 (dotted curves) with K = 0.014, a maximum reflectance of 0.65, γ = γ2 = 0.05, and K 2 = 0.5: (a) router with G = 1.7956 (inset, |H| = 1; G = 1.8188); (b) demultiplexer with G = 1.8442.

Fig. 5
Fig. 5

|H p | (solid curve) and |H c | (dotted curve) versus K, with a maximum reflectance of 0.65, γ2 = 0.05, and K 2 = 0.5. Inset, zoom view of the figure.

Fig. 6
Fig. 6

RRGB as a router with K = 0.014 at port P3 (solid curves) and port P4 (dotted curves): (a) FWHM versus |H|, (b) peak value versus |H|.

Fig. 7
Fig. 7

RRGB as a router with G = 1.7956 at port P3 (solid curves) and port P4 (dotted curves): (a) FWHM versus K, (b) peak value versus K.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E3E1=1-γ1/21-K-H exp-jβL1-H1-K exp-jβL,
E4E1=j1-γK1-H1-K exp-jβL,
H=1-γ1/2 exp-αLi=1N Fi,
F1=G1/2,
F2=j21-γ2K21-K21/2rλ,
r=-jk sinhγbLbαp+jΔβsinhγbLb+γ coshγbLb,
|Hλ|=21-γ2exp-αL|rλ|×GK21-γ1-K21/2.
|H|γ=-1-K2K2G1-γ1/21-γ2|r|,
|H|G=1-γ1-K2K2G1/21-γ2|r|,
|H|γ2=-21-γ1-K2K2G1/2|r|,
|H|K2=1-2K21-γ21-γG1-K2K21/2|r|,
|H||r|=21-γ21-γ1-K2K2G1/2|r|.
|H|γ=-0.5227,  |H|G=0.2766,  |H|γ2=-1.0455,  |H|K20,  |H||r|=1.2407.
Δγ  Δ|H|=-0.00115, Δγ2 with ΔT=50 °C  Δ|H|=-0.0023,  ΔK2  |H|=0, Δrλ  Δ|H|=-0.01986, ΔG  Δ|H|=-0.009735.
Δλ0=λ0αTΔT+λ0neff ξΔT,
Δλ0=2Λn¯αTΔT+2ΛξΔT,

Metrics