Abstract

The self-shading measurement error of the upwelling irradiance that is due to the presence of the instrument housing of an optical spectrometer with the irradiance meter located on a sidearm was calculated with a Monte Carlo code. The dependence of the effect on the instrument dimensions, the values of real optical parameters, sea-surface roughness, and Sun zenith angle were all studied to estimate maximum errors for two possible configurations of a proposed new marine spectrophotometer.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon, K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
    [CrossRef]
  2. J. Piskozub, “Effects of surface waves and sea bottom on self-shading of in-water optical instruments,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 300–308 (1994).
    [CrossRef]
  3. J. Schwarz, A. R. Weeks, K. J. Trundle, I. S. Robinson, “Toward optical closure in coastal waters,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 614–619 (1997).
    [CrossRef]
  4. T. J. Petzold, “Volume scattering functions for selected ocean waters,” (Scripps Institution of Oceanography, University of California, San Diego, 1972).
  5. C. Cox, W. H. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Scripps. Inst. Oceanogr. Bull. 6, 401–488 (1956).

1992

H. R. Gordon, K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
[CrossRef]

1956

C. Cox, W. H. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Scripps. Inst. Oceanogr. Bull. 6, 401–488 (1956).

Cox, C.

C. Cox, W. H. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Scripps. Inst. Oceanogr. Bull. 6, 401–488 (1956).

Ding, K.

H. R. Gordon, K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
[CrossRef]

Gordon, H. R.

H. R. Gordon, K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
[CrossRef]

Munk, W. H.

C. Cox, W. H. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Scripps. Inst. Oceanogr. Bull. 6, 401–488 (1956).

Petzold, T. J.

T. J. Petzold, “Volume scattering functions for selected ocean waters,” (Scripps Institution of Oceanography, University of California, San Diego, 1972).

Piskozub, J.

J. Piskozub, “Effects of surface waves and sea bottom on self-shading of in-water optical instruments,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 300–308 (1994).
[CrossRef]

Robinson, I. S.

J. Schwarz, A. R. Weeks, K. J. Trundle, I. S. Robinson, “Toward optical closure in coastal waters,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 614–619 (1997).
[CrossRef]

Schwarz, J.

J. Schwarz, A. R. Weeks, K. J. Trundle, I. S. Robinson, “Toward optical closure in coastal waters,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 614–619 (1997).
[CrossRef]

Trundle, K. J.

J. Schwarz, A. R. Weeks, K. J. Trundle, I. S. Robinson, “Toward optical closure in coastal waters,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 614–619 (1997).
[CrossRef]

Weeks, A. R.

J. Schwarz, A. R. Weeks, K. J. Trundle, I. S. Robinson, “Toward optical closure in coastal waters,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 614–619 (1997).
[CrossRef]

Limnol. Oceanogr.

H. R. Gordon, K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
[CrossRef]

Scripps. Inst. Oceanogr. Bull.

C. Cox, W. H. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Scripps. Inst. Oceanogr. Bull. 6, 401–488 (1956).

Other

J. Piskozub, “Effects of surface waves and sea bottom on self-shading of in-water optical instruments,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 300–308 (1994).
[CrossRef]

J. Schwarz, A. R. Weeks, K. J. Trundle, I. S. Robinson, “Toward optical closure in coastal waters,” in Ocean Optics XIII, S. G. Ackleson, ed., Proc. SPIE2963, 614–619 (1997).
[CrossRef]

T. J. Petzold, “Volume scattering functions for selected ocean waters,” (Scripps Institution of Oceanography, University of California, San Diego, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Geometry of the sidearm equipment instrument in comparison with the classical layout: r, casing radius; h, casing height; d, arm length; h, vertical displacement of the sensor from the casing bottom.

Fig. 2
Fig. 2

Effect of the azimuth angle of the sidearm on the upwelling irradiance self-shading error: φ = 0°, the arm points away from the Sun; φ = 180°, the arm points toward the Sun; n = 106; c = 0.6 m-1; ω0 = 0.83; θ0 = 30°; ν = 0 m/s; z = 2 m, h = 1.13 m; r = 0.15 m; d arm = 1.1 m; Δh = 0 m.

Fig. 3
Fig. 3

Upwelling irradiance self-shading error as a function of water absorption: n = 4 × 106, b = 0.3 m-1, θ0 = 30°, ν = 5 m/s, φ = 0°, z = 2 m. Thin SUMOSS: h = 1.13 m, r = 0.15 m, d arm = 1.1 m, Δh = 0 m; fat SUMOSS: h = 0.5 m, r = 0.25 m, d arm = 1.1 m, Δh = 0 m.

Fig. 4
Fig. 4

Upwelling irradiance self-shading error as a function of water attenuation: n = 1 × 106, ω0 = 0.8, θ0 = 30°, ν = 5 m/s, φ = 0°, z = 2 m. Thin SUMOSS: h = 1.13 m, r = 0.15 m, d arm = 1.1 m, Δh = 0 m; fat SUMOSS: h = 0.5 m, r = 0.25 m, d arm = 1.1 m, Δh = 0 m.

Fig. 5
Fig. 5

Upwelling irradiance self-shading error as a function of water photon survival ratio ω0: n = 4 × 106, c = 0.5 m-1, θ0 = 30°, ν = 0 m/s, φ = 0°, z = 2 m, h = 1.13 m, r = 0.15 m, d arm = 1.1 m, Δh = 0 m.

Fig. 6
Fig. 6

Upwelling irradiance self-shading error as a function of water attenuation for three configurations: (a) thin SUMOSS sized sidearm instrument, (b) flat disk with the sensor at the center (Gordon–Ding error), (c) thin SUMOSS with the sensor at the center bottom (all data identical as for Fig. 4).

Fig. 7
Fig. 7

Upwelling irradiance self-shading error as a function of the sensor’s depth for three zenith angles of the sun: θ0 = 30°, 45°, and 60°, n = 106, c = 0.5 m-1, ω0 = 0.8, ν = 0 m/s, φ = 0°, h = 1.13 m, r = 0.15 m, d arm = 1.1 m, Δh = 0.1 m.

Fig. 8
Fig. 8

Upwelling irradiance self-shading error as a function of the Sun zenith angle: n = 106, c = 0.5 m-1, ω0 = 0.8, ν = 0 m/s, φ = 0°, z = 2 m, h = 1.13 m, r = 0.15 m, d arm = 1.1 m, Δh = 0 m.

Fig. 9
Fig. 9

Upwelling irradiance self-shading error as a function of the wind speed for three Sun zenith angles: θ0 = 30°, 45°, and 60°, n = 106, c = 0.5 m-1, ω0 = 0.83, φ = 0°, z = 2 m, h = 1.13 m, r = 0.15 m, d arm = 1.1 m, Δh = 0.1 m.

Fig. 10
Fig. 10

Upwelling irradiance self-shading error as a function of the instrument height: n = 106, c = 0.6 m-1, ω0 = 0.8, θ0 = 45°, ν = 5 m/s, φ = 0°, z = 2 m, r = 0.15 m, d arm = 1.1 m, Δh = 0 m.

Fig. 11
Fig. 11

Upwelling irradiance self-shading error as a function of the instrument radius: n = 106, c = 0.6 m-1, ω0 = 0.83, θ0 = 45°, ν = 5 m/s, φ = 0°, z = 2 m, h = 1.13 m, d arm = 1.1 m, Δh = 0.1 m.

Fig. 12
Fig. 12

Upwelling irradiance self-shading error as a function of the instrument sizes for a constant volume of the casing equal to the fat SUMOSS volume: n = 4 × 106, c = 0.6 m-1, ω0 = 0.83, θ0 = 30°, ν = 5 m/s, φ = 0°, z = 2 m, d arm = 1.1 m, Δh = 0 m.

Fig. 13
Fig. 13

Upwelling irradiance self-shading error as a function of the sidearm length: n = 106, c = 0.5 m-1, ω0 = 0.8, θ0 = 30°, ν = 5 m/s, φ = 0°, z = 2 m, h = 1.13 m, r = 0.15 m, Δh = 0 m. Thin SUMOSS: h = 1.13 m, r = 0.15 m; fat SUMOSS: h = 0.5 m, r = 0.25 m.

Fig. 14
Fig. 14

Upwelling irradiance self-shading error as a function of the sensor vertical displacement and three arm lengths: d arm = 0.2, 0.5, and 1.1 m; n = 106; c = 0.5 m-1; ω0 = 0.8; θ0 = 30°; ν = 0 m/s; φ = 0°; z = 2 m; h = 1.13 m; r = 0.15 m.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δEu/Eu=1-exp-kra,
δEu/Eu=kra,

Metrics