Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. H. Liu, Z. Q. Zhang, “Nonuniform fast hankel transform (nufht) algorithm,” Appl. Opt. 38, 6705–6708 (1999).
    [CrossRef]
  2. Q. H. Liu, W. C. Chew, “Applications of the conjugate gradient fast Hankel transfer method with an improved fast Hankel transform,” Radio Sci. 29, 1009–1022 (1994).
    [CrossRef]

1999

1994

Q. H. Liu, W. C. Chew, “Applications of the conjugate gradient fast Hankel transfer method with an improved fast Hankel transform,” Radio Sci. 29, 1009–1022 (1994).
[CrossRef]

Chew, W. C.

Q. H. Liu, W. C. Chew, “Applications of the conjugate gradient fast Hankel transfer method with an improved fast Hankel transform,” Radio Sci. 29, 1009–1022 (1994).
[CrossRef]

Liu, Q. H.

Q. H. Liu, Z. Q. Zhang, “Nonuniform fast hankel transform (nufht) algorithm,” Appl. Opt. 38, 6705–6708 (1999).
[CrossRef]

Q. H. Liu, W. C. Chew, “Applications of the conjugate gradient fast Hankel transfer method with an improved fast Hankel transform,” Radio Sci. 29, 1009–1022 (1994).
[CrossRef]

Zhang, Z. Q.

Appl. Opt.

Radio Sci.

Q. H. Liu, W. C. Chew, “Applications of the conjugate gradient fast Hankel transfer method with an improved fast Hankel transform,” Radio Sci. 29, 1009–1022 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Hn-x=αk0ρ0 expαxJnk0ρ0 expαx,
H˜n*s=αk0ρ0-expaxJnk0ρ0 expαx× exp-ixs2πdx,
H˜n*s=ρ0k0/2i2πs/αΓn+1/2-iπs/αΓn+1/2+iπs/αfor n>-1,

Metrics