Abstract

The requirements and limitations on the use of a volume holographic element for the simultaneous optical stamping of multilayer data into a three-dimensional (3D) bit-oriented material that exhibits a suitable sensitivity threshold are investigated. The expected performance of such a holographic stamping element is examined through a model of the coherent noise effects that result from the interference of the many data layers with one another. We show that higher signal-to-noise values may be achieved through the use of semicoherent light during the readout of the hologram. The main limitations to this technique arise from the bandwidth requirements on the holographic element, the degree of nonlinearity required of the bit-oriented media, and the tolerance requirements for the optical exposure levels. As a demonstration of the concept, a two-layer stamping element is fabricated and used to simultaneously stamp two layers of data into a 3D dye-doped photopolymer storage medium.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Strickler, W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991).
    [CrossRef] [PubMed]
  2. S. Kawata, A. Toriumi, “Three-dimensional optical memory using photopolymer, photorefractive crystals, and photochromic materials,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 174–180 (1997).
    [CrossRef]
  3. M. M. Wang, S. C. Esener, “Three-dimensional optical data storage in a fluorescent dye-doped photopolymer,” Appl. Opt. 39, 1835–1841 (2000).
    [CrossRef]
  4. S. Maruo, O. Nakamura, S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
    [CrossRef] [PubMed]
  5. D. W. Rush, J. Vance, J. Goldhar, G. L. Burdge, “High resolution reflection holography using DuPont photopolymer holographic film,” in Holographic Materials II, T. Trout, ed., Proc. SPIE2688, 141–154 (1996).
    [CrossRef]
  6. D. Gabor, “Light and information,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1961), Vol. 1, pp. 109–153.
    [CrossRef]
  7. D. A. B. Miller, “Spatial channels for communicating with waves between volumes,” Opt. Lett. 23, 1645–1647 (1998).
    [CrossRef]
  8. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  9. C. Gu, G. Sornat, J. Hong, “Bit-error rate and statistics of complex amplitude noise in holographic data storage,” Opt. Lett. 21, 1070–1072 (1996).
    [CrossRef] [PubMed]
  10. K. Curtis, D. Psaltis, “Characterization of the DuPont photopolymer for three-dimensional holographic storage,” Appl. Opt. 33, 5396–5399 (1994).
    [CrossRef] [PubMed]

2000 (1)

1998 (1)

1997 (1)

1996 (1)

1994 (1)

1991 (1)

Burdge, G. L.

D. W. Rush, J. Vance, J. Goldhar, G. L. Burdge, “High resolution reflection holography using DuPont photopolymer holographic film,” in Holographic Materials II, T. Trout, ed., Proc. SPIE2688, 141–154 (1996).
[CrossRef]

Curtis, K.

Esener, S. C.

Gabor, D.

D. Gabor, “Light and information,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1961), Vol. 1, pp. 109–153.
[CrossRef]

Goldhar, J.

D. W. Rush, J. Vance, J. Goldhar, G. L. Burdge, “High resolution reflection holography using DuPont photopolymer holographic film,” in Holographic Materials II, T. Trout, ed., Proc. SPIE2688, 141–154 (1996).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Gu, C.

Hong, J.

Kawata, S.

S. Maruo, O. Nakamura, S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
[CrossRef] [PubMed]

S. Kawata, A. Toriumi, “Three-dimensional optical memory using photopolymer, photorefractive crystals, and photochromic materials,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 174–180 (1997).
[CrossRef]

Maruo, S.

Miller, D. A. B.

Nakamura, O.

Psaltis, D.

Rush, D. W.

D. W. Rush, J. Vance, J. Goldhar, G. L. Burdge, “High resolution reflection holography using DuPont photopolymer holographic film,” in Holographic Materials II, T. Trout, ed., Proc. SPIE2688, 141–154 (1996).
[CrossRef]

Sornat, G.

Strickler, J. H.

Toriumi, A.

S. Kawata, A. Toriumi, “Three-dimensional optical memory using photopolymer, photorefractive crystals, and photochromic materials,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 174–180 (1997).
[CrossRef]

Vance, J.

D. W. Rush, J. Vance, J. Goldhar, G. L. Burdge, “High resolution reflection holography using DuPont photopolymer holographic film,” in Holographic Materials II, T. Trout, ed., Proc. SPIE2688, 141–154 (1996).
[CrossRef]

Wang, M. M.

Webb, W. W.

Appl. Opt. (2)

Opt. Lett. (4)

Other (4)

S. Kawata, A. Toriumi, “Three-dimensional optical memory using photopolymer, photorefractive crystals, and photochromic materials,” in Optical Data Storage 1997 Topical Meeting, H. Birecki, J. Z. Kwiecien, eds., Proc. SPIE3109, 174–180 (1997).
[CrossRef]

D. W. Rush, J. Vance, J. Goldhar, G. L. Burdge, “High resolution reflection holography using DuPont photopolymer holographic film,” in Holographic Materials II, T. Trout, ed., Proc. SPIE2688, 141–154 (1996).
[CrossRef]

D. Gabor, “Light and information,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1961), Vol. 1, pp. 109–153.
[CrossRef]

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Multilayer optical data stamping with a holographic stamping element.

Fig. 2
Fig. 2

Probability distribution functions of the on and the off bit intensities for m = 1, 2, 5, and 25 when n = 2 where reference-beam angles are reused for each layer.

Fig. 3
Fig. 3

SNR as a function of the number of reference beams (m) for several different numbers of layers (n) where reference-beam angles are reused for each layer.

Fig. 4
Fig. 4

Probability distribution functions of the on and the off bit intensities for m = 1, 2, 5, and 25 when n = 2 where reference-beam angles are not reused.

Fig. 5
Fig. 5

SNR as a function of the number of reference beams (m) for several different numbers of layers (n) where reference-beam angles are not reused.

Fig. 6
Fig. 6

Bit-error rate (BER) as a function of SNR calculated for the design in which reference-beam angles are not reused.

Fig. 7
Fig. 7

Experimental setups showing (a) the fabrication of the holographic element and (b) use of the element to stamp data layers into a 3D optical storage medium.

Fig. 8
Fig. 8

Images from the two-layer stamping experiment: (a) Shows the two data layers from the holographic element imaged in air, whereas (b) shows the fluorescence collected from the two data layers after being stamped in a dye-doped photopolymer. The recorded layers in the material are separated by approximately 225 µm.

Tables (1)

Tables Icon

Table 1 SNR of One- and Two-Layer Holographic Elements

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

psignalI=12σ2exp-I+s22σ2I0sIσ2for I00for I<0,
pbackgroundI=12σ2exp-I2σ2for I00for I<0,
Msignalω=psignalI=j exp-s2ωj+2σ2ωj+2σ2ω.
Mbackgroundω=11-2jωσ2.
ponI=-1Msignalωm,
poffI=-1Mbackgroundωm.
SNR=I¯1-I¯0σ12+σ021/2,
ponI=-1Mbackgroundωmn-1 expjωs2m.
poffI=-1Mbackgroundωmn-1.

Metrics