Abstract

We propose a new, to our knowledge, monolithic multilayer optical storage medium in which data may be stored through the diffusional redistribution of fluorescent molecules within a polymer host. The active portion of the medium consists of a photopolymer doped with a fluorescent dye that is polymerized at the focal point of a high-numerical-aperture lens. We believe that as fluorescent molecules bond to the polymer matrix they become more highly concentrated in the polymerized regions, resulting in the modulated data pattern. Since data readout is based on detection of fluorescence rather than index modulation as in other photopolymer-based memories, the problems of media shrinkage and optical scatter are of less concern. An intensity threshold observed in the recording response of this material due to the presence of inhibitor molecules in the photopolymer allows for the three-dimensional confinement of recorded bits and therefore multilayer recording. The nonlinear recording characteristics of this material were investigated through a simple model of photopolymerization and diffusion and verified experimentally. Both single-layer and multilayer recordings were demonstrated.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Rosen, K. A. Rubin, W. C. Tang, W. I. Imaino, “Multilayer optical recording (more),” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y. Tyan, eds., Proc. SPIE2514, 14–19 (1995).
    [CrossRef]
  2. S. R. Chinn, E. A. Swanson, “Multilayer optical storage by low-coherence reflectometry,” Opt. Lett. 21, 899–901 (1996).
    [CrossRef] [PubMed]
  3. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
    [CrossRef]
  4. B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
    [CrossRef]
  5. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  6. D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
    [CrossRef]
  7. J. H. Strickler, W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991).
    [CrossRef] [PubMed]
  8. D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
    [CrossRef] [PubMed]
  9. M. M. Wang, S. C. Esener, F. B. McCormick, I. Çokgör, A. S. Dvornikov, P. M. Rentzepis, “Experimental characterization of a two-photon memory,” Opt. Lett. 22, 558–560 (1997).
    [CrossRef] [PubMed]
  10. H. Ueki, Y. Kawata, S. Kawata, “Three-dimensional optical bit-memory recording and reading with a photorefractive crystal: analysis and experiment,” Appl. Opt. 35, 2457–2465 (1996).
    [CrossRef] [PubMed]
  11. Y. Kawata, R. Juskaitis, T. Tanaka, T. Wilson, S. Kawata, “Differential phase-contrast microscope with a split detector for the readout system of a multilayered optical memory,” Appl. Opt. 35, 2466–2470 (1996).
    [CrossRef] [PubMed]
  12. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998).
    [CrossRef]
  13. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
    [CrossRef]
  14. G. J. Steckman, I. Solomatine, G. Zhou, D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310–1312 (1998).
    [CrossRef]
  15. W. S. Colburn, K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971).
    [CrossRef] [PubMed]
  16. E. S. Gyulnazarov, V. V. Obukhovskii, T. N. Smirnov, “Theory of holographic recording on a photopolymerized material,” Opt. Spectrosc. (Russia) 69, 109–111 (1990).
  17. G. Odian, Principles of Polymerization (Wiley, New York, 1991).

1998 (2)

1997 (1)

1996 (4)

1995 (1)

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[CrossRef]

1994 (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

1993 (1)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

1992 (1)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

1991 (1)

1990 (1)

E. S. Gyulnazarov, V. V. Obukhovskii, T. N. Smirnov, “Theory of holographic recording on a photopolymerized material,” Opt. Spectrosc. (Russia) 69, 109–111 (1990).

1989 (1)

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

1971 (1)

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Boyd, C.

Bunning, T. J.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Campbell, S.

Chang, C.-H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Chinn, S. R.

Çokgör, I.

Colburn, W. S.

Curtis, K.

Dhar, L.

Dvornikov, A. S.

Esener, S. C.

Finn, P. L.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Gyulnazarov, E. S.

E. S. Gyulnazarov, V. V. Obukhovskii, T. N. Smirnov, “Theory of holographic recording on a photopolymerized material,” Opt. Spectrosc. (Russia) 69, 109–111 (1990).

Haines, K. A.

Harris, A.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hill, A.

Imaino, W. I.

H. J. Rosen, K. A. Rubin, W. C. Tang, W. I. Imaino, “Multilayer optical recording (more),” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y. Tyan, eds., Proc. SPIE2514, 14–19 (1995).
[CrossRef]

Juskaitis, R.

Kawata, S.

Kawata, Y.

Kryder, M. H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Levinos, N.

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

McCormick, F. B.

Mok, F.

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[CrossRef]

Natarajan, L. V.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Obukhovskii, V. V.

E. S. Gyulnazarov, V. V. Obukhovskii, T. N. Smirnov, “Theory of holographic recording on a photopolymerized material,” Opt. Spectrosc. (Russia) 69, 109–111 (1990).

Odian, G.

G. Odian, Principles of Polymerization (Wiley, New York, 1991).

Parthenopoulos, D. A.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Psaltis, D.

Rentzepis, P. M.

Rosen, H. J.

H. J. Rosen, K. A. Rubin, W. C. Tang, W. I. Imaino, “Multilayer optical recording (more),” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y. Tyan, eds., Proc. SPIE2514, 14–19 (1995).
[CrossRef]

Rubin, K. A.

H. J. Rosen, K. A. Rubin, W. C. Tang, W. I. Imaino, “Multilayer optical recording (more),” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y. Tyan, eds., Proc. SPIE2514, 14–19 (1995).
[CrossRef]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

Schilling, M.

Smirnov, T. N.

E. S. Gyulnazarov, V. V. Obukhovskii, T. N. Smirnov, “Theory of holographic recording on a photopolymerized material,” Opt. Spectrosc. (Russia) 69, 109–111 (1990).

Solomatine, I.

Steckman, G. J.

Strickler, J. H.

Sutherland, R. L.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Swanson, E. A.

Tackitt, M.

Tanaka, T.

Tang, W. C.

H. J. Rosen, K. A. Rubin, W. C. Tang, W. I. Imaino, “Multilayer optical recording (more),” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y. Tyan, eds., Proc. SPIE2514, 14–19 (1995).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

Tondiglia, V. P.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Ueki, H.

Wang, M. M.

Webb, W. W.

Wilson, T.

Wilson, W.

Wolfe, R.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Zhou, G.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

Chem. Mater. (1)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5, 1533–1538 (1993).
[CrossRef]

Opt. Lett. (5)

Opt. Spectrosc. (Russia) (1)

E. S. Gyulnazarov, V. V. Obukhovskii, T. N. Smirnov, “Theory of holographic recording on a photopolymerized material,” Opt. Spectrosc. (Russia) 69, 109–111 (1990).

Sci. Am. (1)

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[CrossRef]

Science (2)

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Other (2)

H. J. Rosen, K. A. Rubin, W. C. Tang, W. I. Imaino, “Multilayer optical recording (more),” in Optical Data Storage ’95, G. R. Knight, H. Ooki, Y. Tyan, eds., Proc. SPIE2514, 14–19 (1995).
[CrossRef]

G. Odian, Principles of Polymerization (Wiley, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Mechanism of recording. (a) The medium begins with a uniform distribution of fluorescent dye throughout the volume. (b) Light begins photopolymerization and simultaneously fixes dye to the polymer matrix. Free dye will diffuse into the exposed areas, leaving the unexposed regions depleted of dye. (c) After completion of the polymerization process the dye is held in a permanent polymer matrix.

Fig. 2
Fig. 2

Optical system used for both recording and readout of the dye-doped photopolymer medium.

Fig. 3
Fig. 3

Resolution target image recorded into the dye-doped photopolymer medium and read out by the excitation of fluorescence in the recorded layer.

Fig. 4
Fig. 4

Images of the edges of exposed regions and accompanying horizontal profiles are shown. In all cases the left half of the image was first exposed. (a) Edge enhancement is observed 30 s after exposure as dye begins to diffuse into the exposed region. (b) Then 5 min after exposure the profile resembles a flat top. The dip in intensity corresponding to the dye-depleted region is gone. (c) and (d) show exposures that have been immediately followed by a uniform fixing exposure; 30 s after exposure (c) the edge-enhanced structure is again apparent; however, 5 min after exposure (d) the structure has not changed.

Fig. 5
Fig. 5

Numerical simulation of component concentrations and modulation ratio for low-intensity exposure, I 0= 0.41 W/cm2. Polymerization is inhibited.

Fig. 6
Fig. 6

Numerical simulation of component concentrations and modulation ratio for high-intensity exposure, I 0= 0.65 W/cm2. After short induction period, polymerization begins.

Fig. 7
Fig. 7

Numerical simulation of modulation ratio as a function of recording intensity for images recorded at three different exposure energies. In all cases a sharp threshold is observed followed by a rapid increased in the degree of polymerization. Below the threshold point, polymerization is negligible.

Fig. 8
Fig. 8

Fluorescence contrast ratio of images recorded for varying exposure energies at three different constant intensity levels.

Fig. 9
Fig. 9

Fluorescence contrast ratio of images recorded at varying intensity levels for three different constant exposure energies.

Fig. 10
Fig. 10

Images read out from four layers recorded in the medium 70-µm apart in depth. We recorded the images by stepping the focal position of the objective lens, starting with the deepest image.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R·t=σηω Ix, y, z, tR+αR2R·-kiR·M+P-kaR·2-ktR·P·-khR·H,
Ht=αH2H-khHR·+P·,
Mt=αM·NM-MN-kpM(R·+P·),
P·t=kiR·M+P-ktR·P·-khP·H,
Pt=kpMR·+P·,
M+P+N=constant.
modulation ratio=M0, t+P0, tM2a, t+P2a, t,
Ir=I0for ra0  for r>a,

Metrics