Abstract

Frequency-domain photon migration (FDPM) is a widely used technique for measuring the optical properties (i.e., absorption, μa, and reduced scattering, μs′, coefficients) of turbid samples. Typically, FDPM data analysis is performed with models based on a photon diffusion equation; however, analytical solutions are difficult to obtain for many realistic geometries. Here, we describe the use of models based instead on representative samples and multivariate calibration (chemometrics).

FDPM data at seven wavelengths (ranging from 674 to 956 nm) and multiple modulation frequencies (ranging from 50 to 600 MHz) were gathered from turbid samples containing mixtures of three absorbing dyes. Values for μa and μs′ were extracted from the FDPM data in different ways, first with the diffusion theory and then with the chemometric technique of partial least squares. Dye concentrations were determined from the FDPM data by three methods, first by least-squares fits to the diffusion results and then by two chemometric approaches. The accuracy of the chemometric predictions was comparable or superior for all three dyes. Our results indicate that chemometrics can recover optical properties and dye concentrations from the frequency-dependent behavior of photon density waves, without the need for diffusion-based models. Future applications to more complicated geometries, lower-scattering samples, and simpler FDPM instrumentation are discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rapid and accurate determination of tissue optical properties using least-squares support vector machines

Ishan Barman, Narahara Chari Dingari, Narasimhan Rajaram, James W. Tunnell, Ramachandra R. Dasari, and Michael S. Feld
Biomed. Opt. Express 2(3) 592-599 (2011)

Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods

Frédéric Bevilacqua, Andrew J. Berger, Albert E. Cerussi, Dorota Jakubowski, and Bruce J. Tromberg
Appl. Opt. 39(34) 6498-6507 (2000)

Determining the optical properties of a gelatin‑TiO2 phantom at 780 nm

H. Günhan Akarçay, Stefan Preisser, Martin Frenz, and Jaro Rička
Biomed. Opt. Express 3(3) 418-434 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription